Header
Header
Article

Balancing selection on genomic deletion polymorphisms in humans



Aqil, Alber;

Speidel, Leo;

Pavlidis, Pavlos;

Gokcumen, Omer;

(2023)

Balancing selection on genomic deletion polymorphisms in humans.

eLife
, 12


, Article e79111. 10.7554/eLife.79111.

[thumbnail of Speidel_Balancing selection on genomic deletion polymorphisms in humans_AAM.pdf]


Text

Speidel_Balancing selection on genomic deletion polymorphisms in humans_AAM.pdf
– Accepted Version

Download (4MB)

Abstract

A key question in biology is why genomic variation persists in a population for extended periods. Recent studies have identified examples of genomic deletions that have remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly adaptive deletions remains imperative. Here, we demonstrate an excess of polymorphisms in present-day humans that predate the modern human-Neanderthal split (ancient polymorphisms), which cannot be explained solely by selectively neutral scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion polymorphisms. Using a previously published measure of balancing selection, we show that this excess of ancient deletions is largely owing to balancing selection. Based on the absence of signatures of overdominance, we conclude that it is a rare mode of balancing selection among ancient deletions. Instead, more complex scenarios involving spatially and temporally variable selective pressures are likely more common mechanisms. Our results suggest that balancing selection resulted in ancient deletions harboring disproportionately more exonic variants with GWAS associations. We further found that ancient deletions are significantly enriched for traits related to metabolism and immunity. As a by-product of our analysis, we show that deletions are, on average, more deleterious than single-nucleotide variants. We can now argue that not only is a vast majority of common variants shared among human populations, but a considerable portion of biologically relevant variants has been segregating among our ancestors for hundreds of thousands, if not millions, of years.

Download activity – last month
Download activity – last 12 months
Downloads by country – last 12 months

Archive Staff Only

View Item View Item



Source link

Back to top button