Header
Header
Article

Altered white matter connectivity in children with congenital heart disease with single ventricle physiology


  • Feinstein, J. A. et al. Hypoplastic left heart syndrome current considerations and expectations. J. Am. Coll. Cardiol. 59, S1–S42 (2012).

    Article 

    Google Scholar
     

  • Ribera, E. et al. 372: Heart transplantation in adults with congenital heart disease. J. Hear Lung Transplant. 28, S195 (2009).

    Article 

    Google Scholar
     

  • Fruitman, D. S. Hypoplastic left heart syndrome: Prognosis and management options. Paediatr. Child Health 5, 219–225 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Rai, V., Gładki, M., Dudyńska, M. & Skalski, J. Hypoplastic left heart syndrome [HLHS]: Treatment options in present era. Indian J. Thorac. Cardiovasc. Surg. Off. Organ Assoc. Thorac. Cardiovasc. Surg. India 35, 196–202 (2019).


    Google Scholar
     

  • Gaynor, J. W. et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 135, 816–825 (2015).

    Article 

    Google Scholar
     

  • Marino, B. S. et al. Neurodevelopmental outcomes in children with congenital heart disease: Evaluation and management. Circulation 126, 1143–1172 (2012).

    Article 

    Google Scholar
     

  • Chao, B. K. et al. Decreased brain volumes and infants with congenital heart disease undergoing venoarterial extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. J. Soc. Crit. Care Med. World Fed. Pediatr. Intensive Crit. Care Soc. 21, 738–745 (2020).


    Google Scholar
     

  • Claessens, N. H. P. et al. Perioperative neonatal brain injury is associated with worse school-age neurodevelopment in children with critical congenital heart disease. Dev. Med. Child Neurol. 60, 1052–1058 (2018).

    Article 

    Google Scholar
     

  • Dovjak, G. O. et al. Abnormal extracardiac development in fetuses with congenital heart disease. J. Am. Coll. Cardiol. 78, 2312–2322 (2021).

    Article 

    Google Scholar
     

  • Griffiths, P. D. et al. An integrated in utero MR method for assessing structural brain abnormalities and measuring intracranial volumes in fetuses with congenital heart disease: Results of a prospective case-control feasibility study. Neuroradiology 61, 603–611 (2019).

    Article 

    Google Scholar
     

  • Kuhn, V. A. et al. Determinants of neurological outcome in neonates with congenital heart disease following heart surgery. Pediatr. Res. 89, 1283–1290 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Melazzini, L., Codari, M., Vitali, P. & Sardanelli, F. Brain vascular changes in adults with congenital heart disease: A systematic review. Neuroimage Clin. 23, 101873 (2019).

    Article 

    Google Scholar
     

  • Ng, I. H. X. et al. Investigating altered brain development in infants with congenital heart disease using tensor-based morphometry. Sci. Rep. 10, 14909 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ren, J.-Y., Ji, H., Zhu, M. & Dong, S.-Z. DWI in brains of fetuses with congenital heart disease: A case-control MR imaging study. Am. J. Neuroradiol. 42, 2040–2045 (2021).

    Article 

    Google Scholar
     

  • Shillingford, A. J. et al. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics 121, e759–e767 (2008).

    Article 

    Google Scholar
     

  • Weissmann-Brenner, A. et al. Assessment of the association between congenital heart defects and brain injury in fetuses through magnetic resonance imaging. Isr. Med. Assoc. J. IMAJ 22, 27–31 (2020).


    Google Scholar
     

  • Calderon, J. et al. Early-term birth in single-ventricle congenital heart disease after the Fontan procedure: Neurodevelopmental and psychiatric outcomes. J. Pediatr. 179, 96–103 (2016).

    Article 

    Google Scholar
     

  • Hövels-Gürich, H. H. et al. Long-term behavior and quality of life after corrective cardiac surgery in infancy for tetralogy of fallot or ventricular septal defect. Pediatr. Cardiol. 28, 346–354 (2007).

    Article 

    Google Scholar
     

  • Guo, Z., Li, X., Huang, H., Guo, N. & Li, Q. Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018). https://doi.org/10.1109/isbi.2018.8363717

  • Hagmann, C., Singer, J., Latal, B., Knirsch, W. & Makki, M. Regional microstructural and volumetric magnetic resonance imaging (MRI) abnormalities in the corpus callosum of neonates with congenital heart defect undergoing cardiac surgery. J. Child Neurol. 31, 300–308 (2015).

    Article 

    Google Scholar
     

  • Heye, K. N. et al. Reduction of brain volumes after neonatal cardiopulmonary bypass surgery in single-ventricle congenital heart disease before Fontan completion. Pediatr. Res. 83, 63–70 (2018).

    Article 

    Google Scholar
     

  • Hottinger, S. J. et al. Postoperative improvement of brain maturation in infants with congenital heart disease. Semin. Thorac. Cardiovasc. Surg. 34, 251–259 (2022).

    Article 

    Google Scholar
     

  • Sadhwani, A. et al. Fetal brain volume predicts neurodevelopment in congenital heart disease. Circulation 145, 1108–1119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kelly, C. J. et al. Abnormal microstructural development of the cerebral cortex in neonates with congenital heart disease is associated with impaired cerebral oxygen delivery. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 8, e009893 (2019).

    Article 

    Google Scholar
     

  • Bolduc, M., Lambert, H., Ganeshamoorthy, S. & Brossard-Racine, M. Structural brain abnormalities in adolescents and young adults with congenital heart defect: A systematic review. Dev. Med. Child Neurol. 60, 1209–1224 (2018).

    Article 

    Google Scholar
     

  • Bellinger, D. C. et al. Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the Fontan procedure. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 4, e002302 (2015).

    Article 

    Google Scholar
     

  • Ehrler, M. et al. Microstructural alterations of the corticospinal tract are associated with poor motor function in patients with severe congenital heart disease. Neuroimage Clin. 32, 102885 (2021).

    Article 

    Google Scholar
     

  • Brosig, C. L. et al. Preschool neurodevelopmental outcomes in children with congenital heart disease. J. Pediatr. 183, 80-86.e1 (2017).

    Article 

    Google Scholar
     

  • Stegeman, R. et al. Early motor outcomes in infants with critical congenital heart disease are related to neonatal brain development and brain injury. Dev. Med. Child Neurol. 64, 192–199 (2022).

    Article 

    Google Scholar
     

  • Wehrle, F. M. et al. Similarities and differences in the neurodevelopmental outcome of children with congenital heart disease and children born very preterm at school entry. J. Pediatr. https://doi.org/10.1016/j.jpeds.2022.05.047 (2022).

    Article 

    Google Scholar
     

  • Longmuir, P. E., Banks, L. & McCrindle, B. W. Cross-sectional study of motor development among children after the Fontan procedure. Cardiol. Young 22, 443–450 (2012).

    Article 

    Google Scholar
     

  • Rollins, C. K. & Newburger, J. W. Neurodevelopmental outcomes in congenital heart disease. Circulation 130, e124–e126 (2014).

    Article 

    Google Scholar
     

  • Saiki, H. et al. Novel mechanisms for cerebral blood flow regulation in patients with congenital heart disease. Am. Heart J. 172, 152–159 (2016).

    Article 

    Google Scholar
     

  • Watson, C. G., Stopp, C., Newburger, J. W. & Rivkin, M. J. Graph theory analysis of cortical thickness networks in adolescents with d-transposition of the great arteries. Brain Behav. 8, e00834 (2018).

    Article 

    Google Scholar
     

  • Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Pierpaoli, C. & Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Brewster, R. C., King, T. Z., Burns, T. G., Drossner, D. M. & Mahle, W. T. White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease. J. Int. Neuropsychol. Soc. 21, 22–33 (2015).

    Article 

    Google Scholar
     

  • Ehrler, M. et al. Altered white matter microstructure is related to cognition in adults with congenital heart disease. Brain Commun. 3, fcaa224 (2020).

    Article 

    Google Scholar
     

  • Yeh, F.-C., Wedeen, V. J. & Tseng, W.-Y.I. Generalized ${q}$-sampling imaging. IEEE Trans. Med. Imaging 29, 1626–1635 (2010).

    Article 

    Google Scholar
     

  • Jeurissen, B., Leemans, A., Tournier, J., Jones, D. K. & Sijbers, J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 34, 2747–2766 (2013).

    Article 

    Google Scholar
     

  • Tournier, J.-D., Calamante, F., Gadian, D. G. & Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23, 1176–1185 (2004).

    Article 

    Google Scholar
     

  • Tuch, D. S. et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002).

    Article 

    Google Scholar
     

  • Wedeen, V. J., Hagmann, P., Tseng, W. I., Reese, T. G. & Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).

    Article 

    Google Scholar
     

  • Wedeen, V. J. et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41, 1267–1277 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Bhroin, M. N. et al. Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. Neuroimage Clin. 28, 102423 (2020).

    Article 

    Google Scholar
     

  • Karmacharya, S. et al. Advanced diffusion imaging for assessing normal white matter development in neonates and characterizing aberrant development in congenital heart disease. Neuroimage Clin. 19, 360–373 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Easson, K. et al. Quantification of apparent axon density and orientation dispersion in the white matter of youth born with congenital heart disease. Neuroimage 205, 116255 (2020).

    Article 

    Google Scholar
     

  • Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article 

    Google Scholar
     

  • Feldmann, M. et al. Delayed maturation of the structural brain connectome in neonates with congenital heart disease. Brain Commun. 2, fcaa209 (2020).

    Article 

    Google Scholar
     

  • Ramirez, A. et al. Neonatal brain injury influences structural connectivity and childhood functional outcomes. PLoS ONE 17, e0262310 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Asis-Cruz, J. D., Donofrio, M. T., Vezina, G. & Limperopoulos, C. Aberrant brain functional connectivity in newborns with congenital heart disease before cardiac surgery. Neuroimage Clin. 17, 31–42 (2018).

    Article 

    Google Scholar
     

  • Schmithorst, V. J. et al. Structural network topology correlates of microstructural brain dysmaturation in term infants with congenital heart disease. Hum. Brain Mapp. 39, 4593–4610 (2018).

    Article 

    Google Scholar
     

  • Birca, A. et al. Interplay of brain structure and function in neonatal congenital heart disease. Ann. Clin. Transl. Neurol. 3, 708–722 (2016).

    Article 

    Google Scholar
     

  • Panigrahy, A. et al. Relationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries. Neuroimage Clin. 7, 438–448 (2015).

    Article 

    Google Scholar
     

  • Aleksonis, H. A. & King, T. Z. Relationships among structural neuroimaging and neurocognitive outcomes in adolescents and young adults with congenital heart disease: A systematic review. Neuropsychol. Rev. https://doi.org/10.1007/s11065-022-09547-2 (2022).

    Article 

    Google Scholar
     

  • Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C. & Tseng, W.-Y.I. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8, e80713 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Yeh, F.-C., Badre, D. & Verstynen, T. Connectometry: A statistical approach harnessing the analytical potential of the local connectome. Neuroimage 125, 162–171 (2016).

    Article 

    Google Scholar
     

  • Wechsler, D. WISC-V: Technical and Interpretive Manual (Pearson, 2014).


    Google Scholar
     

  • Delis, D. C., Kaplan, E. & Kramer, J. H. Delis–Kaplan Executive Function System: Examiner’s Manual (The Psychological Corporation, 2001).


    Google Scholar
     

  • Dunn, L. M., Dunn, D. M. & Lenhard, A. Peabody Picture Vocabulary Test: PPVT 4 (Pearson, 2015).


    Google Scholar
     

  • Williams, K. T. EVT2: Expressive Vocabulary Test 2nd edn. (Pearson, 2007).


    Google Scholar
     

  • Instruments, L. Grooved Pegboard (Lafayette Instrument Company, 2021).


    Google Scholar
     

  • Roth, R. M., Isquith, P. K. & Gioia, G. A. Assessment of Executive Functioning Using the Behavior Rating Inventory of Executive Function (BRIEF) (Springer, 2014).

    Book 

    Google Scholar
     

  • Irfanoglu, M. O., Nayak, A., Jenkins, J. & Pierpaoli, C. TORTOISE v3: Improvements and new features of the NIH diffusion MRI processing pipeline. In International Society for Magentic Resonance Medicine (2018).

  • Isensee, F. et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40, 4952–4964 (2019).

    Article 

    Google Scholar
     

  • Cox, R. W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    Article 

    Google Scholar
     

  • Yeh, F.-C. et al. Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints. PLoS Comput. Biol. 12, e1005203 (2016).

    Article 

    Google Scholar
     

  • Yeh, F.-C. et al. Differential tractography as a track-based biomarker for neuronal injury. Neuroimage 202, 116131 (2019).

    Article 

    Google Scholar
     

  • Yeh, F.-C. et al. Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP). Neurother. J. Am. Soc. Exp. Neurother. 16, 52–58 (2018).


    Google Scholar
     

  • Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    Article 

    Google Scholar
     

  • Zaidi, S. & Brueckner, M. Genetics and genomics of congenital heart disease. Circ. Res. 120, 923–940 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Singh, S. et al. Altered brain diffusion tensor imaging indices in adolescents with the Fontan palliation. Neuroradiology 61, 811–824 (2019).

    Article 

    Google Scholar
     

  • Kadis, D. S., Dimitrijevic, A., Toro-Serey, C. A., Smith, M. L. & Holland, S. K. Characterizing information flux within the distributed pediatric expressive language network: A core region mapped through fMRI-constrained MEG effective connectivity analyses. Brain Connect. 6, 76–83 (2016).

    Article 

    Google Scholar
     

  • Youssofzadeh, V., Williamson, B. J. & Kadis, D. S. Mapping critical language sites in children performing verb generation: Whole-brain connectivity and graph theoretical analysis in MEG. Front. Hum. Neurosci. 11, 173 (2017).

    Article 

    Google Scholar
     

  • Alahmadi, A. A. S. Investigating the sub-regions of the superior parietal cortex using functional magnetic resonance imaging connectivity. Insights Imaging 12, 47 (2021).

    Article 

    Google Scholar
     



  • Source link

    Back to top button