Header
Header
Article

Serum cortisol and insulin-like growth factor 1 levels in major depressive disorder and schizophrenia


  • Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2, e141. https://doi.org/10.1371/journal.pmed.0020141 (2005).

    Article 

    Google Scholar
     

  • Hasin, D. S. et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiat. 75, 336–346. https://doi.org/10.1001/jamapsychiatry.2017.4602 (2018).

    Article 

    Google Scholar
     

  • Girshkin, L., Matheson, S. L., Shepherd, A. M. & Green, M. Morning cortisol levels in schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology 49, 187–206. https://doi.org/10.1016/j.psyneuen.2014.07.013 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Stetler, C. & Miller, G. E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med. 73, 114–126. https://doi.org/10.1097/PSY.0b013e31820ad12b (2011).

    Article 

    Google Scholar
     

  • Walder, D. J., Walker, E. F. & Lewine, R. J. Cognitive functioning, cortisol release, and symptom severity in patients with schizophrenia. Biol. Psychiatry 48, 1121–1132. https://doi.org/10.1016/s0006-3223(00)01052-0 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hubbard, D. B. & Miller, B. J. Meta-analysis of blood cortisol levels in individuals with first-episode psychosis. Psychoneuroendocrinology 104, 269–275. https://doi.org/10.1016/j.psyneuen.2019.03.014 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. Y. et al. Nesfatin-1 and cortisol: Potential novel diagnostic biomarkers in moderate and severe depressive disorder. Psychol. Res. Behav. Manag. 11, 495–502. https://doi.org/10.2147/PRBM.S183126 (2019).

    Article 

    Google Scholar
     

  • Zorn, J. V. et al. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology 77, 25–36. https://doi.org/10.1016/j.psyneuen.2016.11.036 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Geerlings, M. I. & Gerritsen, L. Late-life depression, hippocampal volumes, and hypothalamic-pituitary-adrenal axis regulation: A systematic review and meta-analysis. Biol. Psychiatry 82, 339–350. https://doi.org/10.1016/j.biopsych.2016.12.032 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. et al. The role of neural plasticity in depression: From hippocampus to prefrontal cortex. Neural Plast. https://doi.org/10.1155/2017/6871089 (2017).

    Article 

    Google Scholar
     

  • Mondelli, V. Higher cortisol levels are associated with smaller left hippocampal volume in first-episode psychosis. Schizophr. Res. 119, 75–78. https://doi.org/10.1016/j.schres.2009.12.021 (2010).

    Article 

    Google Scholar
     

  • Whalley, L. J. et al. Glucocorticoid receptors and depression. Br. Med. J. 292, 859–861. https://doi.org/10.1136/bmj.292.6524.859 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Gurnani, K. C., Sharma, S. N., Chansouria, J. P. & Gurnani, S. Adrenocortical dysfunction in depression: Response to dexamethasone suppression test—A comparative study. Indian J. Psychiatry 30, 153–159 (1988).

    CAS 

    Google Scholar
     

  • Maguire, T. M., Thakore, J., Dinan, T. G., Hopwood, S. & Breen, K. C. Plasma sialyltransferase levels in psychiatric disorders as a possible indicator of HPA axis function. Biol. Psychiatry 41, 1131–1136. https://doi.org/10.1016/S0006-3223(96)00223-5 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Muck-Seler, D. et al. Platelet serotonin and plasma prolactin and cortisol in healthy, depressed and schizophrenic women. Psychiatry Res. 127, 217–226. https://doi.org/10.1016/j.psychres.2004.04.001 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Cherian, K., Schatzberg, A. F. & Keller, J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition. Schizophr. Res. 213, 72–77. https://doi.org/10.1016/j.schres.2019.07.003 (2019).

    Article 

    Google Scholar
     

  • Veldhuis, J. D., Sharma, A. & Roelfsema, F. Age-dependent and gender-dependent regulation of hypothalamic–adrenocorticotropic–adrenal axis. Endocrinol. Metab. Clin. North Am. 42, 201–225. https://doi.org/10.1016/j.ecl.2013.02.002 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ruddick-Collins, L. C., Morgan, P. J. & Johnstone, A. M. Mealtime: A circadian disruptor and determinant of energy balance?. J. Neuroendocrinol. 32, e12886. https://doi.org/10.1111/jne.12886 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jones, C. & Gwenin, C. Cortisol level dysregulation and its prevalence—Is it nature’s alarm clock?. Physiol. Rep. 8, e14644. https://doi.org/10.14814/phy2.14644 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Galvez-Contreras, A. Y. Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev. 32, 85–96. https://doi.org/10.1016/j.cytogfr.2016.08.004 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tu, K. Y. Significantly higher peripheral insulin-like growth factor-1 levels in patients with major depressive disorder or bipolar disorder than in healthy controls: A meta-analysis and review under guideline of PRISMA. Medicine 95, e2411. https://doi.org/10.1097/MD.0000000000002411 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bot, M., Milaneschi, Y., Penninx, B. W. & Drent, M. L. Plasma insulin-like growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users. Psychoneuroendocrinology 68, 148–155. https://doi.org/10.1016/j.psyneuen.2016.02.028 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Effect of risperidone treatment on insulin-like growth factor-1 and interleukin-17 in drug naïve first-episode schizophrenia. Psychiatry Res. 297, 113717. https://doi.org/10.1016/j.psychres.2021.113717 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Petrikis, P. et al. Elevated levels of insulin-like growth factor-1 (IGF-1) in drug-naïve patients with psychosis. Psychiatry Res. 246, 348–352. https://doi.org/10.1016/j.psychres.2016.09.053 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Duman, C. H. et al. Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav. Brain Res. 198, 366–371. https://doi.org/10.1016/j.bbr.2008.11.016 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Olanzapine ameliorates neuropathological changes and increases IGF-1 expression in frontal cortex of C57BL/6 mice exposed to cuprizone. Psychiatry Res. 216, 438–445. https://doi.org/10.1016/j.psychres.2014.02.019 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y., Luan, D., Song, R. & Zhang, Z. Value of peripheral neurotrophin levels for the diagnosis of depression and response to treatment: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 41, 40–51. https://doi.org/10.1016/j.euroneuro.2020.09.633 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Troyan, A. S. & Levada, O. A. The diagnostic value of the combination of serum brain-derived neurotrophic factor and insulin-like growth factor-1 for major depressive disorder diagnosis and treatment efficacy. Front. Psychiatry 11, 800. https://doi.org/10.3389/fpsyt.2020.00800 (2020).

    Article 

    Google Scholar
     

  • Aguirre, G. A., De Ita, J. R., de la Garza, R. G. & Castilla-Cortazar, I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. 14, 3. https://doi.org/10.1186/s12967-015-0762-z (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chao, X. L. et al. The association between serum insulin-like growth factor 1 and cognitive impairments in patients with schizophrenia. Psychiatry Res. 285, 112731. https://doi.org/10.1016/j.psychres.2019.112731 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Demirel, A., Demirel, O. F., Emül, M., Duran, A. & Uğur, M. Relationships between IGF-1, schizophrenia, and treatment of metabolic syndrome. Compr. Psychiatry 55, 1391–1397. https://doi.org/10.1016/j.comppsych.2014.04.008 (2014).

    Article 

    Google Scholar
     

  • Koshiyama, D. et al. White matter microstructural alterations across four major psychiatric disorders: Mega-analysis Study in 2,937 individuals. Mol. Psychiatry 25, 883–895. https://doi.org/10.1038/s41380-019-0553-7 (2020).

    Article 

    Google Scholar
     

  • Okamoto, N. et al. Association between serum insulin-like growth factor 1 levels and the clinical symptoms of chronic schizophrenia: Preliminary findings. Front. Psychiatry 12, 653802. https://doi.org/10.3389/fpsyt.2021.653802 (2021).

    Article 

    Google Scholar
     

  • Palomino, A. et al. Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 44, 29–33. https://doi.org/10.1016/j.pnpbp.2013.01.008 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Venkatasubramanian, G., Chittiprol, S., Neelakantachar, N., Shetty, T. & Gangadhar, B. N. Effect of antipsychotic treatment on insulin-like growth factor-1 and cortisol in schizophrenia: A longitudinal study. Schizophr. Res. 119, 131–137. https://doi.org/10.1016/j.schres.2010.01.033 (2010).

    Article 

    Google Scholar
     

  • Cianfarani, S. et al. IGF-I and IGF-binding protein-1 are related to cortisol in human cord blood. Eur. J. Endocrinol. 138, 524–529. https://doi.org/10.1530/eje.0.1380524 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Forhead, A. J., Dauncey, M. J., Gilmour, R. S. & Fowden, A. L. Control of growth hormone receptor and insulin-like growth factor-I expression by cortisol in ovine fetal skeletal muscle. J. Physiol. 541, 581–589. https://doi.org/10.1113/jphysiol.2002.016402 (2002).

    Article 
    CAS 

    Google Scholar
     

  • McCarthy, T. L., Centrella, M. & Canalis, E. Cortisol inhibits the synthesis of insulin-like growth factor-I in skeletal cells. Endocrinology 126, 1569–1575. https://doi.org/10.1210/endo-126-3-1569 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Kopczak, A. et al. IGF-I in major depression and antidepressant treatment response. Eur. Neuropsychopharmacol. 6, 864–872. https://doi.org/10.1016/j.euroneuro.2014.12.013 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tajiri, M., Suzuki, Y., Tsuneyama, N., Arinami, H. & Someya, T. Hormonal dynamics effect of serum insulin-like growth factor 1 and cortisol/dehydroepiandrosterone sulfate ratio on symptom severity of major depressive disorder. J. Clin. Psychopharmacol. 39, 367–371. https://doi.org/10.1097/JCP.0000000000001071 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Arinami, H., Suzuki, Y., Tajiri, M., Tsuneyama, N. & Someya, T. Role of insulin-like growth factor 1, sex and corticosteroid hormones in male major depressive disorder. BMC Psychiatry 21, 157. https://doi.org/10.1186/s12888-021-03116-2 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kraus, K. L., Chordia, A. P., Drake, A. W., Herman, J. P. & Danzer, S. C. Hippocampal interneurons are direct targets for circulating glucocorticoids. J. Comp. Neurol. 530, 2100–2112. https://doi.org/10.1002/cne.25322 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Webster, M. J., Knable, M. B., O’Grady, J., Orthmann, J. & Weickert, C. S. Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol. Psychiatry 7, 985–994. https://doi.org/10.1038/sj.mp.4001139 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Ota, M. et al. Structural differences in hippocampal subfields among schizophrenia patients, major depressive disorder patients, and healthy subjects. Psychiatry Res. Neuroimaging 259, 54–59. https://doi.org/10.1016/j.pscychresns.2016.11.002 (2017).

    Article 

    Google Scholar
     

  • Aberg, M. A. et al. IGF-1 has a direct proliferative effect in adult hippocampal progenitor cells. Mol. Cell. Neurosci. 24, 23–40. https://doi.org/10.1016/s1044-7431(03)00082-4 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Chen, F. et al. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res. 15, 146546. https://doi.org/10.1016/j.brainres.2019.146546 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dong, D. et al. Common and diagnosis-specific fractional anisotropy of white matter in schizophrenia, bipolar disorder, and major depressive disorder: Evidence from comparative voxel-based meta-analysis. Schizophr. Res. 193, 456–458. https://doi.org/10.1016/j.schres.2017.07.003 (2018).

    Article 

    Google Scholar
     

  • Sokolov, B. P. Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies?. Int. J. Neuropsychopharmacol. 10, 547–555. https://doi.org/10.1017/S1461145706007322 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Borráz-León, J. I., Cerda-Molina, A. L. & Mayagoitia-Novales, L. Stress and cortisol responses in men: Differences according to facial symmetry. Stress 20, 573–579. https://doi.org/10.1080/10253890.2017.1378341 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Walvekar, S. S., Ambekar, J. G. & Devaranavadagi, B. B. Study on serum cortisol and perceived stress scale in the police constables. J. Clin. Diagn. Res. 9, BC10–BC14. https://doi.org/10.7860/JCDR/2015/12015.5576 (2015).

    Article 

    Google Scholar
     

  • Cole, J. et al. White matter abnormalities and illness severity in major depressive disorder. Br. J. Psychiatry 201, 33–39. https://doi.org/10.1192/bjp.bp.111.100594 (2012).

    Article 

    Google Scholar
     

  • Seitz-Holland, J. et al. Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia: A multicenter harmonized diffusion tensor imaging study. Mol. Psychiatry 26, 5357–5370. https://doi.org/10.1038/s41380-021-01018-z (2021).

    Article 

    Google Scholar
     

  • Misra, M. & Klibanski, A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2, 581–592. https://doi.org/10.1016/S2213-8587(13)70180-3 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L. Z. et al. Decreased levels of insulin-like growth factor-1 are associated with Alzheimer’s disease: A meta-analysis. J. Alzheimers Dis. 82, 1357–1367. https://doi.org/10.3233/JAD-210516 (2021).

    Article 
    CAS 

    Google Scholar
     

  • KoumantarouMalisiova, E. et al. Hair cortisol concentrations in mental disorders: A systematic review. Physiol. Behav. 229, 113244. https://doi.org/10.1016/j.physbeh.2020.113244 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Aas, I. H. Guidelines for rating global assessment of functioning (GAF). Ann. Gen. Psychiatry 10, 2. https://doi.org/10.1186/1744-859X-10-2 (2011).

    Article 

    Google Scholar
     

  • Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62. https://doi.org/10.1136/jnnp.23.1.56 (1960).

    Article 
    CAS 

    Google Scholar
     

  • Overall, J. E. & Gorham, D. R. The Brief Psychiatric Rating Scale. Psychol. Rep. 10, 799–812. https://doi.org/10.2466/pr0.1962.10.3.799 (1962).

    Article 

    Google Scholar
     

  • Inada, T. & Inagaki, A. Psychotropic dose equivalence in Japan. Psychiatry Clin. Neurosci. 69, 440–447. https://doi.org/10.1111/pcn.12275 (2015).

    Article 

    Google Scholar
     

  • Subramaniam, A., LoPilato, A. & Walker, E. F. Psychotropic medication effects on cortisol: Implications for research and mechanisms of drug action. Schizophr. Res. 213, 6–14. https://doi.org/10.1016/j.schres.2019.06.023 (2019).

    Article 

    Google Scholar
     

  • Oswald, L. M. et al. Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 30, 821–832. https://doi.org/10.1038/sj.npp.1300667 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pruessner, M., Cullen, A. E., Aas, M. & Walker, E. F. The neural diathesis-stress model of schizophrenia revisited: An update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci. Biobehav. Rev. 73, 191–218. https://doi.org/10.1016/j.neubiorev.2016.12.013 (2017).

    Article 

    Google Scholar
     

  • Durá-Travé, T. & Gallinas-Victoriano, F. Hyper-androgenemia and obesity in early-pubertal girls. J. Endocrinol. Investig. 8, 1577–1585. https://doi.org/10.1007/s40618-022-01797-4 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Harrewijn, A. et al. Associations between brain activity and endogenous and exogenous cortisol: A systematic review. Psychoneuroendocrinology 120, 104775. https://doi.org/10.1016/j.psyneuen.2020.104775 (2020).

    Article 
    CAS 

    Google Scholar
     

  • De Geyter, D., De Smedt, A., Stoop, W., De Keyser, J. & Kooijman, R. Central IGF-I receptors in the brain are instrumental to neuroprotection by systemically injected IGF-I in a rat model for ischemic stroke. CNS Neurosci. Ther. 22, 611–616. https://doi.org/10.1111/cns.12550 (2016).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Back to top button