Header
Header
Article

Tract-based white matter hyperintensity patterns in patients with systemic lupus erythematosus using an unsupervised machine learning approach


  • Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 341, 288 (2010).

    Article 

    Google Scholar
     

  • Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    Article 

    Google Scholar
     

  • Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010).

    Article 

    Google Scholar
     

  • Govoni, M. et al. The diagnosis and clinical management of the neuropsychiatric manifestations of lupus. J. Autoimmun. 74, 41–72 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Magro-Checa, C., Steup-Beekman, G. M., Huizinga, T. W., van Buchem, M. A. & Ronen, I. Laboratory and neuroimaging biomarkers in neuropsychiatric systemic lupus erythematosus: Where do we stand, where to go?. Front. Med. 5, 340 (2018).

    Article 

    Google Scholar
     

  • Hanly, J. G., Kozora, E., Beyea, S. D. & Birnbaum, J. Review: Nervous system disease in systemic lupus erythematosus: Current status and future directions. Arthritis Rheumatol. 71, 33–42 (2019).

    Article 

    Google Scholar
     

  • Ainiala, H., Loukkola, J., Peltola, J., Korpela, M. & Hietaharju, A. The prevalence of neuropsychiatric syndromes in systemic lupus erythematosus. Neurology 57, 496–500 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gladman, D. D. et al. The Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for systemic lupus erythematosus international comparison. J. Rheumatol. 27, 373–376 (2000).

    CAS 

    Google Scholar
     

  • Hanly, J. G. Diagnosis and management of neuropsychiatric SLE. Nat. Rev. Rheumatol. 10, 338–347 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Preziosa, P. et al. Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: A multicenter study structural MRI correlates of cognitive impairment in patients with multiple sclerosis: A multicenter study cognitive impairment and brain damage in. Hum. Brain Mapp. 37, 1627–1644 (2016).

    Article 

    Google Scholar
     

  • Meijer, K. A., Steenwijk, M. D., Douw, L., Schoonheim, M. M. & Geurts, J. J. G. Long-range connections are more severely damaged and relevant for cognition in multiple sclerosis. Brain 143, 150–160 (2020).

    Article 

    Google Scholar
     

  • Taylor, A. N. W. et al. Tract-specific white matter hyperintensities disrupt neural network function in Alzheimer’s disease. Alzheimer’s Dement. 13, 225–235 (2017).

    Article 

    Google Scholar
     

  • Ghaznawi, R., Geerlings, M., Jaarsma-Coes, M., Hendrikse, J. & de Bresser, J. Association of white matter hyperintensity markers on MRI and long-term risk of mortality and ischemic stroke. Neurology https://doi.org/10.1212/wnl.0000000000011827 (2021).

    Article 

    Google Scholar
     

  • Inglese, F. et al. Different phenotypes of neuropsychiatric systemic lupus erythematosus are related to a distinct pattern of structural changes on brain MRI. Eur. Radiol. https://doi.org/10.1007/s00330-021-07970-2 (2021).

    Article 

    Google Scholar
     

  • Ramirez, G. A. et al. Quantitative MRI adds to neuropsychiatric lupus diagnostics. Rheumatology https://doi.org/10.1093/rheumatology/keaa779 (2020).

    Article 

    Google Scholar
     

  • Shastri, R. K. et al. MR diffusion tractography to identify and characterize microstructural white matter tract changes in systemic lupus erythematosus patients. Acad. Radiol. 23, 1431–1440 (2016).

    Article 

    Google Scholar
     

  • Danelakis, A., Theoharis, T. & Verganelakis, D. A. Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput. Med. Imaging Graph. 70, 83–100 (2018).

    Article 

    Google Scholar
     

  • Caligiuri, M. E. et al. Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review. Neuroinformatics 13, 261–276 (2015).

    Article 

    Google Scholar
     

  • Heinen, R. et al. Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset. Sci. Rep. 9, 1–12 (2019).

    Article 
    CAS 

    Google Scholar
     

  • de Sitter, A. et al. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. Neuroimage 163, 106–114 (2017).

    Article 

    Google Scholar
     

  • Vanderbecq, Q. et al. Comparison and validation of seven white matter hyperintensities segmentation software in elderly patients. NeuroImage Clin. 27, 102357 (2020).

    Article 

    Google Scholar
     

  • Zirkzee, E. J. M. et al. Prospective study of clinical phenotypes in neuropsychiatric systemic lupus erythematosus; Multidisciplinary approach to diagnosis and therapy. J. Rheumatol. 39, 2118–2126 (2012).

    Article 

    Google Scholar
     

  • Monahan, R. C. et al. Mortality in patients with systemic lupus erythematosus and neuropsychiatric involvement: A retrospective analysis from a tertiary referral center in the Netherlands. Lupus 29, 1892–1901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bortoluzzi, A. et al. Development and validation of a new algorithm for attribution of neuropsychiatric events in systemic lupus erythematosus. Rheumatology 54, 891–898 (2014).

    Article 

    Google Scholar
     

  • Hanly, J. G. et al. Neuropsychiatric events at the time of diagnosis of systemic lupus erythematosus: An international inception cohort study. Arthritis Rheum. 56, 265–273 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Liang, M. H. et al. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 42, 599–608 (1999).

    Article 

    Google Scholar
     

  • Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Gladman, D. D., Ibañez, D. & Urowltz, M. B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 29, 288–291 (2002).


    Google Scholar
     

  • Petri, M. et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    Article 

    Google Scholar
     

  • Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2012).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Article 
    MATH 

    Google Scholar
     

  • Caliñski, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with Python. 92–96 (2010). https://doi.org/10.25080/Majora-92bf1922-011

  • Jaarsma-Coes, M. G. et al. MRI phenotypes of the brain are related to future stroke and mortality in patients with manifest arterial disease: The SMART-MR study. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X18818918 (2018).

    Article 

    Google Scholar
     

  • Kant, I. M. J. et al. Preoperative MRI brain phenotypes are related to postoperative delirium in older individuals. Neurobiol. Aging 101, 247–255 (2021).

    Article 

    Google Scholar
     

  • Schmidt, P. et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59, 3774–3783 (2012).

    Article 

    Google Scholar
     

  • Pego-Reigosa, J. M. et al. Relationship between damage clustering and mortality in systemic lupus erythematosus in early and late stages of the disease: Cluster analyses in a large cohort from the Spanish Society of Rheumatology Lupus Registry. Rheumatology 55, 1243–1250 (2016).

    Article 

    Google Scholar
     

  • Zollars, E. et al. Clinical application of a modular genomics technique in systemic lupus erythematosus: Progress towards precision medicine. Int. J. Genomics 2016, (2016).

  • To, C. H. & Petri, M. Is antibody clustering predictive of clinical subsets and damage in systemic lupus erythematosus?. Arthritis Rheum. 52, 4003–4010 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Nystedt, J. et al. Altered white matter microstructure in lupus patients: A diffusion tensor imaging study. Arthritis Res. Ther. 20, 1–11 (2018).

    Article 

    Google Scholar
     

  • Costallat, B. L. et al. Brain diffusion tensor MRI in systematic lupus erythematosus: A systematic review. Autoimmun. Rev. 17, 36–43 (2018).

    Article 

    Google Scholar
     

  • Jung, R. E. et al. White matter correlates of neuropsychological dysfunction in systemic Lupus Erythematosus. PLoS ONE 7, 1–6 (2012).


    Google Scholar
     

  • Lampe, L. et al. Lesion location matters: The relationships between white matter hyperintensities on cognition in the healthy elderly. J. Cereb. Blood Flow Metab. 39, 36–43 (2017).

    Article 

    Google Scholar
     

  • Niida, R. et al. Aberrant anterior thalamic radiation structure in bipolar disorder: A diffusion tensor tractography study. Front. Psychiatry 9, 522 (2018).

    Article 

    Google Scholar
     

  • Calderón, J. et al. Impact of cognitive impairment, depression, disease activity, and disease damage on quality of life in women with systemic lupus erythematosus. Scand. J. Rheumatol. 46, 273–280 (2017).

    Article 

    Google Scholar
     

  • Clark, K. A. et al. Mean diffusivity and fractional anisotropy as indicators of disease and genetic liability to schizophrenia. J. Psychiatr. Res. 45, 980–988 (2011).

    Article 

    Google Scholar
     

  • Gobbi, C. et al. Forceps minor damage and co-occurrence of depression and fatigue in multiple sclerosis. Mult. Scler. J. 20, 1633–1640 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Duering, M. et al. Strategic role of frontal white matter tracts in vascular cognitive impairment: A voxel-based lesion-symptom mapping study in CADASIL. Brain 134, 2366–2375 (2011).

    Article 

    Google Scholar
     

  • Chen, H. F. et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment. CNS Neurosci. Ther. 26, 576–588 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mak, A. et al. Early cerebral volume reductions and their associations with reduced lupus disease activity in patients with newly-diagnosed systemic lupus erythematosus. Sci. Rep. 6, 1–9 (2016).

    Article 

    Google Scholar
     

  • Magro-Checa, C. et al. Value of multidisciplinary reassessment in attribution of neuropsychiatric events to systemic lupus erythematosus: Prospective data from the Leiden NPSLE cohort. Rheumatology 56, 1676–1683 (2017).

    Article 

    Google Scholar
     

  • Postal, M., Lapa, A. T., Reis, F., Rittner, L. & Appenzeller, S. Magnetic resonance imaging in neuropsychiatric systemic lupus erythematosus: Current state of the art and novel approaches. Lupus 26, 517–521 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ercan, E. et al. A multimodal MRI approach to identify and characterize microstructural brain changes in neuropsychiatric systemic lupus erythematosus. NeuroImage Clin. 8, 337–344 (2015).

    Article 

    Google Scholar
     



  • Source link

    Back to top button