Pathological features of glial cells and motor neurons in the anterior horn of the spinal cord in sporadic ALS using ADAR2 conditional knockout mice
Glutamate receptors: RNA editing and death of motor neurons.
Nature. 2004; 427: 801https://doi.org/10.1038/427801a
Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons.
Neurobiol. Dis. 2012; 45: 1121-1128https://doi.org/10.1016/j.nbd.2011.12.033
RNA editing of AMPA receptor subunit GluR-B: a base- paired intron-exon structure determines position and efficiency.
Cell. 1993; 75: 1361-1370https://doi.org/10.1016/0092-8674(93)90622-w
Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2.
Nature. 2000; 406: 78-81https://doi.org/10.1038/35017558
Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2.
J. Neurosci. 2010; 30: 11917-11925https://doi.org/10.1523/JNEUROSCI.2021-10.2010
When does ALS start? ADAR2-GluA2 hypothesis for the etiology of sporadic ALS.
Front. Mol. Neurosci. 2011; 4: 33https://doi.org/10.3389/fnmol.2011.00033
TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2.
Acta Neuropathol. 2010; 120: 75-84https://doi.org/10.1007/s00401-010-0678-x
Co-occurrence of TDP-43 mislocalization with reduced activity of an RNA editing enzyme, ADAR2, in aged mouse motor neurons.
PLoS One. 2012; 7e43469https://doi.org/10.1371/journal.pone.0043469
Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents.
J. Neurophysiol. 1998; 80: 583-593https://doi.org/10.1152/jn.1998.80.2.583
Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns.
J. Neurophysiol. 1998; 80: 572-582https://doi.org/10.1152/jn.1998.80.2.572
Identified ankle extensor and flexor motoneurons display different firing profiles in the neonatal rat.
J. Neurosci. 2009; 29: 2748-2753https://doi.org/10.1523/JNEUROSCI.3462-08.2009
Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units.
Muscle Nerve. 1990; 13: 545-550https://doi.org/10.1002/mus.880130612
Loss of neurons from the motor nucleus of the facial nerve in the ageing mouse brain.
J. Anat. 1988; 160: 189-194
Stability of motor neuron number in the oculomotor and trochlear nuclei of the ageing mouse brain.
J. Anat. 1991; 174: 125-129
VAChT-Cre.Fast and VAChT- Cre.Slow: postnatal expression of Cre recombinase in somatomotor neurons with different onset.
Genesis. 2003; 37: 44-50https://doi.org/10.1002/gene.10224
Guidelines for the design and statistical analysis of experiments using laboratory animals.
ILAR J. 2002; 43: 244-258https://doi.org/10.1093/ilar.43.4.244
The localization of motoneurons supplying the hindlimb muscles of the mouse.
Philos. Trans. R. Soc. Lond .B. Biol. Sci. 1981; 293: 477-508https://doi.org/10.1098/rstb.1981.0082
The sizes of motoneurons supplying hindlimb muscles in the mouse.
Proc. R. Soc. Lond. B Biol. Sci. 1981; 213: 201-216https://doi.org/10.1098/rspb.1981.0062
Physiological types and histochemical profiles in motor units of the cat gastrocnemius.
J. Physiol. 1973; 234: 723-748https://doi.org/10.1113/jphysiol.1973.sp010369
Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases.
J. Neurosci. 2000; 20: 2534-2542https://doi.org/10.1523/JNEUROSCI.20-07-02534.2000
Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF.
Nat. Neurosci. 2006; 9: 408-419https://doi.org/10.1038/nn1653
Selective expression of Osteopontin in ALS-resistant motor neurons is a critical determinant of late phase neurodegeneration mediated by Matrix Metalloproteinase-9.
Sci. Rep. 2006; 6: 27354https://doi.org/10.1038/srep27354
Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.
Neuron. 2014; 81: 333-348https://doi.org/10.1016/j.neuron.2013.12.009
Medial gastrocnemius motor nucleus in the rat: age-related changes in the number and size of motoneurons.
J. Comp. Neurol. 1988; 269: 425-430https://doi.org/10.1002/cne.902690309
SDH activity and cell size of tibialis anterior motoneurons and muscle fibers in SAMP6.
NeuroReport. 2000; 11: 823-828https://doi.org/10.1097/00001756-200003200-00033
A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice.
Nat. Neurosci. 2009; 12: 627-636https://doi.org/10.1038/nn.2297
Changes in properties of the medial gastrocnemius motor units in aging rats.
J. Neurophysiol. 1989; 61: 737-746https://doi.org/10.1152/jn.1989.61.4.737
Properties of single motor units in medial gastrocnemius muscles of adult and old rats.
J. Physiol. 1996; 493: 543-552https://doi.org/10.1113/jphysiol.1996.sp021402
Glial cells in amyotrophic lateral sclerosis.
Neurol. Res. Int. 2011; 2011718987https://doi.org/10.1155/2011/718987
Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis.
Nat. Neurosci. 2008; 11: 251-253https://doi.org/10.1038/nn2047
Temporospatial analysis and new players in the immunology of amyotrophic lateral sclerosis.
Int. J. Mol. Sci. 2018; 19: 631https://doi.org/10.3390/ijms19020631
Motor neuron diversity in development and disease.
Annu. Rev. Neurosci. 2010; 33: 409-440https://doi.org/10.1146/annurev.neuro.051508.135722
Calcium homeostasis in aging neurons.
Front. Genet. 2012; 3: 200https://doi.org/10.3389/fgene.2012.00200
Calcium and neurodegeneration.
Aging Cell. 2007; 6: 337-350https://doi.org/10.1111/j.1474-9726.2007.00275.x
Calcium signaling and neurodegenerative diseases.
Trends. Mol. Med. 2009; 15: 89-100https://doi.org/10.1016/j.molmed.2009.01.001