Header
Header
Article

MDMX elevation by a novel Mdmx–p53 interaction inhibitor mitigates neuronal damage after ischemic stroke


  • Sacco, R. L. et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(7), 2064–2089 (2013).

    Article 

    Google Scholar
     

  • Campbell, B. C. V. et al. Ischaemic stroke. Nat. Rev. Dis. Primers 5(1), 70 (2019).

    Article 

    Google Scholar
     

  • Patel, P., Yavagal, D. & Khandelwal, P. Hyperacute management of ischemic strokes: JACC focus seminar. J. Am. Coll. Cardiol. 75(15), 1844–1856 (2020).

    Article 

    Google Scholar
     

  • Agostini, M., Melino, G. & Bernassola, F. The p53 family in brain disease. Antioxid. Redox Signal. 29(1), 1–14 (2018).

    Article 

    Google Scholar
     

  • Miller, F. D., Pozniak, C. D. & Walsh, G. S. Neuronal life and death: An essential role for the p53 family. Cell Death Differ. 7(10), 880–888 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25(4), 849–855 (1994) (discussion 55–6).

    Article 
    CAS 

    Google Scholar
     

  • Filichia, E. et al. Forebrain neuronal specific ablation of p53 gene provides protection in a cortical ischemic stroke model. Neuroscience 295, 1–10 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Turnquist, C. et al. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ. 23(9), 1515–1528 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7), 1536–1548 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sedarous, M. et al. Calpains mediate p53 activation and neuronal death evoked by DNA damage. J. Biol. Chem. 278(28), 26031–26038 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Leker, R. R., Aharonowiz, M., Greig, N. H. & Ovadia, H. The role of p53-induced apoptosis in cerebral ischemia: Effects of the p53 inhibitor pifithrin alpha. Exp. Neurol. 187(2), 478–486 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Niizuma, K., Endo, H., Nito, C., Myer, D. J. & Chan, P. H. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke 40(2), 618–625 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Feng, X., Liu, X., Zhang, W. & Xiao, W. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J. 30(16), 3397–3415 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Intervention of death-associated protein kinase 1–p53 interaction exerts the therapeutic effects against stroke. Stroke 45(10), 3089–3091 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. MALAT1 activates the P53 signaling pathway by regulating MDM2 to promote ischemic stroke. Cell Physiol. Biochem. 50(6), 2216–2228 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Haupt, S. et al. Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis. 6, e1821 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Saito, A., Hayashi, T., Okuno, S., Nishi, T. & Chan, P. H. Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin-proteasome system during reperfusion after stroke: Role of oxidative stress. J. Cereb. Blood Flow Metab. 25(2), 267–280 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Vecino, R. et al. The MDM2–p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia. Sci. Rep. 8(1), 1610 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wade, M., Li, Y. C. & Wahl, G. M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13(2), 83–96 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Karni-Schmidt, O., Lokshin, M. & Prives, C. The roles of MDM2 and MDMX in cancer. Annu. Rev. Pathol. 11, 617–644 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Miles, X., Vandevoorde, C., Hunter, A. & Bolcaen, J. MDM2/X inhibitors as radiosensitizers for glioblastoma targeted therapy. Front. Oncol. 11, 703442 (2021).

    Article 

    Google Scholar
     

  • Pant, V., Xiong, S., Iwakuma, T., Quintas-Cardama, A. & Lozano, G. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc. Natl. Acad. Sci. U.S.A. 108(29), 11995–12000 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, L. et al. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc. Natl. Acad. Sci. U.S.A. 108(29), 12001–12006 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat. Genet. 29(1), 92–95 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, S., Van Pelt, C. S., Elizondo-Fraire, A. C., Liu, G. & Lozano, G. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc. Natl. Acad. Sci. U.S.A. 103(9), 3226–3231 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Francoz, S. et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc. Natl. Acad. Sci. U.S.A. 103(9), 3232–3237 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Polager, S. & Ginsberg, D. p53 and E2f: Partners in life and death. Nat. Rev. Cancer 9(10), 738–748 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Benosman, S. et al. Multiple neurotoxic stresses converge on MDMX proteolysis to cause neuronal apoptosis. Cell Death Differ. 14(12), 2047–2057 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Colacurcio, D. J., Yeager, A., Kolson, D. L., Jordan-Sciutto, K. L. & Akay, C. Calpain-mediated degradation of MDMx/MDM4 contributes to HIV-induced neuronal damage. Mol. Cell. Neurosci. 57, 54–62 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sang, P. et al. Alpha-helix-mimicking sulfono-gamma-AApeptide inhibitors for p53-MDM2/MDMX protein–protein interactions. J. Med. Chem. 63(3), 975–986 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Uesato, S. et al. Discovery of new low-molecular-weight p53-Mdmx disruptors and their anti-cancer activities. Bioorg. Med. Chem. 24(8), 1919–1926 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pulya, S. et al. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol. Res. 163, 105274 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Picci, C. et al. HDAC6 inhibition promotes alpha-tubulin acetylation and ameliorates CMT2A peripheral neuropathy in mice. Exp. Neurol. 328, 113281 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S., Owens, G. C., Makarenkova, H. & Edelman, D. B. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 5(5), e10848 (2010).

    Article 
    ADS 

    Google Scholar
     

  • LoPresti, P. HDAC6 in diseases of cognition and of neurons. Cells 10(1), 12 (2020).

    Article 

    Google Scholar
     

  • English, K. & Barton, M. C. HDAC6: A key link between mitochondria and development of peripheral neuropathy. Front. Mol. Neurosci. 14, 684714 (2021).

    Article 
    CAS 

    Google Scholar
     

  • LoPresti, P. The selective HDAC6 inhibitor ACY-738 impacts memory and disease regulation in an animal model of multiple sclerosis. Front. Neurol. 10, 519 (2019).

    Article 

    Google Scholar
     

  • Zhao, Y., Liang, T., Hou, X. & Fang, H. Recent development of novel HDAC6 isoform-selective Inhibitors. Curr. Med. Chem. 28(21), 4133–4151 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Narita, K. et al. Synthesis and biological evaluation of novel FK228 analogues as potential isoform selective HDAC inhibitors. Eur. J. Med. Chem. 121, 592–609 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hiranaka, S. et al. Design, synthesis, and blood–brain barrier transport study of pyrilamine derivatives as histone deacetylase inhibitors. ACS Med. Chem. Lett. 9(9), 884–888 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nagano, S. et al. TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons. Acta Neuropathol. 140(5), 695–713 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H. & Verma, I. M. Development of a self-inactivating lentivirus vector. J. Virol. 72(10), 8150–8157 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. et al. MiRNA-132/212 regulates tight junction stabilization in blood-brain barrier after stroke. Cell Death Discov. 7(1), 380 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garcia, J. H., Wagner, S., Liu, K. F. & Hu, X. J. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4), 627–634 (1995) (discussion 35).

    Article 
    CAS 

    Google Scholar
     

  • Watanabe, A. et al. Serine racemase inhibition induces nitric oxide-mediated neurovascular protection during cerebral ischemia. Neuroscience 339, 139–149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Reed, D. et al. Identification and characterization of the first small molecule inhibitor of MDMX. J. Biol. Chem. 285(14), 10786–10796 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hirata, Y. et al. New 5-aryl-substituted 2-aminobenzamide-type HDAC inhibitors with a diketopiperazine group and their ameliorating effects on ischemia-induced neuronal cell death. Sci. Rep. 8(1), 1400 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Strachan, G. D., Jordan-Sciutto, K. L., Rallapalli, R., Tuan, R. S. & Hall, D. J. The E2F–1 transcription factor is negatively regulated by its interaction with the MDMX protein. J. Cell. Biochem. 88(3), 557–568 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sasaki, T. et al. SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 69(1), 106–119 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kiyokawa, S. et al. New orally bioavailable 2-aminobenzamide-type histone deacetylase inhibitor possessing a (2-hydroxyethyl)(4-(thiophen-2-yl)benzyl)amino group. Bioorg. Med. Chem. 18(11), 3925–3933 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Maeda, T. et al. Potent histone deacetylase inhibitors: N-hydroxybenzamides with antitumor activities. Bioorg. Med. Chem. 12(16), 4351–4360 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Soussi, T., Ishioka, C., Claustres, M. & Beroud, C. Locus-specific mutation databases: Pitfalls and good practice based on the p53 experience. Nat. Rev. Cancer 6(1), 83–90 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Soussi, T. & Wiman, K. G. Shaping genetic alterations in human cancer: The p53 mutation paradigm. Cancer Cell 12(4), 303–312 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Sanz, G., Singh, M., Peuget, S. & Selivanova, G. Inhibition of p53 inhibitors: Progress, challenges and perspectives. J. Mol. Cell Biol. 11(7), 586–599 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez, C. et al. Single-nucleotide polymorphism 309T>G in the MDM2 promoter determines functional outcome after stroke. Stroke 49(10), 2437–2444 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Migliorini, D. et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell. Biol. 22(15), 5527–5538 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Strachan, G. D., Koike, M. A., Siman, R., Hall, D. J. & Jordan-Sciutto, K. L. E2F1 induces cell death, calpain activation, and MDMX degradation in a transcription independent manner implicating a novel role for E2F1 in neuronal loss in SIV encephalitis. J. Cell. Biochem. 96(4), 728–740 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Q., Chen, L., Schonbrunn, E. & Chen, J. MDMX inhibits casein kinase 1alpha activity and stimulates Wnt signaling. EMBO J. 39(14), e104410 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wohlberedt, K. et al. Mdm4 supports DNA replication in a p53-independent fashion. Oncogene 39(25), 4828–4843 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Venkatesh, D. et al. MDM2 and MDMX promote ferroptosis by PPARalpha-mediated lipid remodeling. Genes Dev. 34(7–8), 526–543 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ding, H., Dolan, P. J. & Johnson, G. V. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J. Neurochem. 106(5), 2119–2130 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cook, C. et al. Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Hum. Mol. Genet. 21(13), 2936–2945 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yee, A. J. et al. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: A multicentre phase 1b trial. Lancet Oncol. 17(11), 1569–1578 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bitler, B. G. et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat. Cell Biol. 19(8), 962–973 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, H. W. et al. HDAC6 deacetylates p53 at lysines 381/382 and differentially coordinates p53-induced apoptosis. Cancer Lett. 391, 162–171 (2017).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Back to top button