EHS
EHS

High intra-task and low inter-task correlations of motor skills in humans creates an individualized behavioural pattern


  • Scott, S. H. & Kalaska, J. F. Voluntary movement: Motor cortices. In Principles of Neural Science (eds Kandel, E. R. et al.) 815–859 (McGraw Hill, 2021).


    Google Scholar
     

  • Nielsen, J. B. & Jessell, T. M. Sensory-motor integration in the spinal cord. In Principles of Neural Science (eds Kandel, E. R. et al.) 761–782 (McGraw Hill, 2021).


    Google Scholar
     

  • Bastian, A. J. & Lisberger, S. G. The cerebellum. In Principles of Neural Science (eds Kandel, E. R. et al.) 908–931 (McGraw Hill, 2021).


    Google Scholar
     

  • Vidal, P.-P. & Lacquaniti, F. Perceptual-motor styles. Exp. Brain Res. 239, 1359–1380 (2021).

    Article 

    Google Scholar
     

  • Słowiński, P. et al. Dynamic similarity promotes interpersonal coordination in joint action. J. R. Soc. Interface 13, 20151093 (2016).

    Article 

    Google Scholar
     

  • Aeles, J., Horst, F., Lapuschkin, S., Lacourpaille, L. & Hug, F. Revealing the unique features of each individual’s muscle activation signatures. J. R. Soc. Interface 18, 20200770 (2021).

    Article 

    Google Scholar
     

  • Loula, F., Prasad, S., Harber, K. & Shiffrar, M. Recognizing people from their movement. J. Exp. Psychol. Hum. Percept. Perform. 31, 210–220 (2005).

    Article 

    Google Scholar
     

  • Coste, A. et al. Decoding identity from motion: How motor similarities colour our perception of self and others. Psychol. Res. 85, 509–519 (2021).

    Article 

    Google Scholar
     

  • Troje, N. F., Westhoff, C. & Lavrov, M. Person identification from biological motion: Effects of structural and kinematic cues. Percept. Psychophys. 67, 667–675 (2005).

    Article 

    Google Scholar
     

  • Pataky, T. C., Mu, T., Bosch, K., Rosenbaum, D. & Goulermas, J. Y. Gait recognition: Highly unique dynamic plantar pressure patterns among 104 individuals. J. R. Soc. Interface 9, 790–800 (2012).

    Article 

    Google Scholar
     

  • Krus, P. H., Bruininks, R. H. & Robertson, G. Structure of motor abilities in children. Percept. Mot. Skills 52, 119–129 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Hands, B. & Larkin, D. Using the Rasch measurement model to investigate the construct of motor ability in young children. J. Appl. Meas. 2, 101–120 (2001).

    CAS 

    Google Scholar
     

  • Ibrahim, H., Hear, N. P. & Blanksby, B. Exploring the general motor ability construct. Percept. Mot. Skills 113, 491–508 (2011).

    Article 

    Google Scholar
     

  • Henry, F. M. Reaction time-movement time correlations. Percept. Mot. Skills 12, 63–66 (1961).

    Article 

    Google Scholar
     

  • Haga, M., Pedersen, A. V. & Sigmundsson, H. Interrelationship among selected measures of motor skills. Child 34, 245–248 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Nance, R. D. The effects of pacing and distribution on intercorrelations of motor abilities. J. Exp. Psychol. 37, 459–472. https://doi.org/10.1037/h0060705 (1947).

    Article 
    CAS 

    Google Scholar
     

  • Lorås, H. & Sigmundsson, H. Interrelations between three fine motor skills in young adults. Percept. Mot. Skills 115, 171–178 (2012).

    Article 

    Google Scholar
     

  • Scott, S. H. Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J. Neurosci. Methods 89, 119–127 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Singh, K. & Scott, S. H. A motor learning strategy reflects neural circuitry for limb control. Nat. Neurosci. 6, 399–403 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Coderre, A. M. et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabilit. Neural Repair 24, 528–541 (2010).

    Article 

    Google Scholar
     

  • Otaka, E. et al. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. J. NeuroEng. Rehabilit. 12, 66 (2015).

    Article 

    Google Scholar
     

  • Kenzie, J. M. et al. Anatomical correlates of proprioceptive impairments following acute stroke: A case series. J. Neurol. Sci. 342, 52–61 (2014).

    Article 

    Google Scholar
     

  • Simmatis, L., Krett, J., Scott, S. H. & Jin, A. Y. Robotic exoskeleton assessment of transient ischemic attack. PLoS ONE 12, 1–13 (2017).

    Article 

    Google Scholar
     

  • Tyryshkin, K. et al. A robotic object hitting task to quantify sensorimotor impairments in participants with stroke. J. NeuroEng. Rehabilit. 11, 47 (2014).

    Article 

    Google Scholar
     

  • Wiratman, W., Kobayashi, S., Chang, F.-Y., Asano, K. & Ugawa, Y. Assessment of cognitive and motor skills in Parkinson’s disease by a robotic object hitting game. Front. Neurol. 10, 19 (2019).

    Article 

    Google Scholar
     

  • Bourke, T. C. et al. A robot-based behavioural task to quantify impairments in rapid motor decisions and actions after stroke. J. Neuroeng. Rehabilit. 13, 91 (2016).

    Article 

    Google Scholar
     

  • Lowrey, C., Jackson, C., Bagg, S., Dukelow, S. & Scott, S. A novel robotic task for assessing impairments in bimanual coordination post-stroke. Int. J. Phys. Med. Rehabilit. S3, 002 (2014).

    Article 

    Google Scholar
     

  • Wood, M. D., Simmatis, L. E. R., Gordon Boyd, J., Scott, S. H. & Jacobson, J. A. Using principal component analysis to reduce complex datasets produced by robotic technology in healthy participants. J. NeuroEng. Rehabilit. 15, 71 (2018).

    Article 

    Google Scholar
     

  • Wickens, C. D. The effects of divided attention on information processing in manual tracking. J. Exp. Psychol. 2, 1–13. https://doi.org/10.1037/0096-1523.2.1.1 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Rinne, P. et al. Motor dexterity and strength depend upon integrity of the attention-control system. Proc. Natl. Acad. Sci. 115, E536 LP-E545 (2018).

    Article 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Cross, C. L. Statistical and methodological considerations when using cluster analysis in neuropsychological research BT. In Cluster Analysis in Neuropsychological Research (eds Allen, D. N. & Goldstein, G.) 13–35 (Springer New York, 2013).

    Chapter 

    Google Scholar
     

  • Cicchetti, D. V. Guidelines, criteria and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 6, 284–290 (1994).

    Article 

    Google Scholar
     

  • Weir, J. P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 19, 231–240 (2005).


    Google Scholar
     

  • Simmatis, L. E. R., Early, S., Moore, K. D., Appaqaq, S. & Scott, S. H. Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing. J. NeuroEng. Rehabilit. 17, 86 (2020).

    Article 

    Google Scholar
     

  • Lowrey, C. R., Bourke, T. C., Bagg, S. D., Dukelow, S. P. & Scott, S. H. A postural unloading task to assess fast corrective responses in the upper limb following stroke. J. NeuroEng. Rehabilit. 16, 16 (2019).

    Article 

    Google Scholar
     

  • Maselli, A. et al. A whole body characterization of individual strategies, gender differences and common styles in overarm throwing. J. Neurophysiol. 122, 2486–2503 (2019).

    Article 

    Google Scholar
     

  • Chang, M. et al. Whole-body kinematics and coordination in a complex dance sequence: Differences across skill levels. Hum. Mov. Sci. 69, 102564 (2020).

    Article 

    Google Scholar
     

  • Gløersen, Ø., Myklebust, H., Hallén, J. & Federolf, P. Technique analysis in elite athletes using principal component analysis. J. Sports Sci. 36, 229–237 (2018).

    Article 

    Google Scholar
     

  • Schorer, J., Baker, J., Fath, F. & Jaitner, T. Identification of interindividual and intraindividual movement patterns in handball players of varying expertise levels. J. Mot. Behav. 39, 409–421 (2007).

    Article 

    Google Scholar
     

  • Tresilian, J. R. & Stelmach, G. E. Common organization for unimanual and bimanual reach-to-grasp tasks. Exp. Brain Res. 115, 283–299 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Y., Goodman, J. M., Moore, D. D., Solla, S. A. & Bensmaia, S. J. Unexpected complexity of everyday manual behaviors. Nat. Commun. 11, 1–8 (2020).

    Article 

    Google Scholar
     

  • Zacharias, S. & Kirk, A. Drawing with the non-dominant hand: Implications for the study of construction. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 25(4), 306–309 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Philip, B. A. & Frey, S. H. Increased functional connectivity between cortical hand areas and praxis network associated with training-related improvements in non-dominant hand precision drawing. Neuropsychologia 87, 157–168 (2016).

    Article 

    Google Scholar
     

  • Hore, J., Watts, S., Tweed, D. & Miller, B. Overarm throws with the nondominant arm: Kinematics of accuracy. J. Neurophysiol. 76, 3693–3704 (1996).

    Article 
    CAS 

    Google Scholar
     

  • de Kovel, C. G. F., Carrión-Castillo, A. & Francks, C. A large-scale population study of early life factors influencing left-handedness. Sci. Rep. 9, 584 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Peters, M., Reimers, S. & Manning, J. T. Hand preference for writing and associations with selected demographic and behavioral variables in 255,100 subjects: The BBC internet study. Brain Cogn. 62, 177–189 (2006).

    Article 

    Google Scholar
     

  • Wood, M. D. et al. Principal components analysis using data collected from healthy individuals on two robotic assessment platforms yields similar behavioral patterns. Front. Hum. Neurosci. 15, 652201 (2021).

    Article 

    Google Scholar
     

  • Wanzel, K. R. et al. Visual-spatial ability correlates with efficiency of hand motion and successful surgical performance. Surgery 134, 750–757 (2003).

    Article 

    Google Scholar
     

  • Cutting, J. E. & Kozlowski, L. T. Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychon. Soc. 9, 353–356 (1977).

    Article 

    Google Scholar
     

  • Hug, F. et al. Individuals have unique muscle activation signatures as revealed during gait and pedaling. J. Appl. Physiol. 127, 1165–1174 (2019).

    Article 

    Google Scholar
     

  • Hill, H. & Pollick, F. E. Exaggerating temporal differences enhances recognition of individuals from point light displays. Psychol. Sci. 11, 223–228 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Raibert M. Motor control and learning by the state space model. PhD Dissertation (1977).

  • Contreras-Vidal, J. L. & Buch, E. R. Effects of Parkinson’s disease on visuomotor adaptation. Exp. Brain Res. 150, 25–32 (2003).

    Article 

    Google Scholar
     

  • Caimmi, M. et al. Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients. Neurorehabilit. Neural Repair 22, 31–39 (2007).

    Article 

    Google Scholar
     

  • Buchanan, J., Park, J.-H. & Shea, C. Target width scaling in a repetitive aiming task: Switching between cyclical and discrete units of action. Exp. Brain Res. Exp. Hirnforschung. Exp. Cérébrale 175, 710–725 (2006).


    Google Scholar
     

  • Hogan, N. & Sternad, D. On rhythmic and discrete movements: Reflections, definitions and implications for motor control. Exp. Brain Res. 181, 13–30 (2007).

    Article 

    Google Scholar
     

  • Guiard, Y. On Fitts’s and Hooke’s laws: Simple harmonic movement in upper-limb cyclical aiming. Acta Psychol. 82, 139–159. https://doi.org/10.1016/0001-6918(93)90009-G (1993).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    EHS
    Back to top button