EHS
EHS

Sirt3 deficiency induced down regulation of insulin degrading enzyme in comorbid Alzheimer’s disease with metabolic syndrome


  • Gurka, M. J., Guo, Y., Filipp, S. L. & DeBoer, M. D. Metabolic syndrome severity is significantly associated with future coronary heart disease in Type 2 diabetes. Cardiovasc. Diabetol. 17, 17. https://doi.org/10.1186/s12933-017-0647-y (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12. https://doi.org/10.1007/s11906-018-0812-z (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neergaard, J. S. et al. Metabolic syndrome, insulin resistance, and cognitive dysfunction: Does your metabolic profile affect your brain?. Diabetes 66, 1957–1963. https://doi.org/10.2337/db16-1444 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Y. C. et al. Impact of worsened metabolic syndrome on the risk of dementia: A nationwide cohort study. J. Am. Heart Assoc. 6, e004749. https://doi.org/10.1161/JAHA.116.004749 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, C. K. et al. Increased risk of cognitive impairment in patients with components of metabolic syndrome. Medicine (Baltimore) 95, e4791. https://doi.org/10.1097/MD.0000000000004791 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, L. A. et al. Amelioration of metabolic syndrome-associated cognitive impairments in mice via a reduction in dietary fat content or infusion of non-diabetic plasma. EBioMedicine 3, 26–42. https://doi.org/10.1016/j.ebiom.2015.12.008 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tyagi, A. et al. Metabolic syndrome exacerbates amyloid pathology in a comorbid Alzheimer’s mouse model. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165849. https://doi.org/10.1016/j.bbadis.2020.165849 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyagi, A. et al. SIRT3 deficiency-induced mitochondrial dysfunction and inflammasome formation in the brain. Sci. Rep. 8, 17547. https://doi.org/10.1038/s41598-018-35890-7 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Gaamouch, F. et al. Peripheral and cognitive benefits of physical exercise in a mouse model of midlife metabolic syndrome. Sci. Rep. 12, 3260. https://doi.org/10.1038/s41598-022-07252-x (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pugazhenthi, S. Metabolic syndrome and the cellular phase of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 146, 243–258. https://doi.org/10.1016/bs.pmbts.2016.12.016 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190. https://doi.org/10.1016/j.molcel.2011.07.019 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green, M. F. & Hirschey, M. D. SIRT3 weighs heavily in the metabolic balance: A new role for SIRT3 in metabolic syndrome. J. Gerontol. A Biol. Sci. Med. Sci. 68, 105–107. https://doi.org/10.1093/gerona/gls132 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newman, J. C., He, W. & Verdin, E. Mitochondrial protein acylation and intermediary metabolism: Regulation by sirtuins and implications for metabolic disease. J. Biol. Chem. 287, 42436–42443. https://doi.org/10.1074/jbc.R112.404863 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschey, M. D., Shimazu, T., Huang, J. Y. & Verdin, E. Acetylation of mitochondrial proteins. Methods Enzymol. 457, 137–147. https://doi.org/10.1016/S0076-6879(09)05008-3 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyagi, A., Mirita, C., Shah, I., Reddy, P. H. & Pugazhenthi, S. Effects of lipotoxicity in brain microvascular endothelial cells during Sirt3 deficiency-potential role in comorbid Alzheimer’s disease. Front. Aging Neurosci. 13, 716616. https://doi.org/10.3389/fnagi.2021.716616 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro, M. F., Genebra, T., Rego, A. C., Rodrigues, C. M. P. & Sola, S. Amyloid beta peptide compromises neural stem cell fate by irreversibly disturbing mitochondrial oxidative state and blocking mitochondrial biogenesis and dynamics. Mol. Neurobiol. 56, 3922–3936. https://doi.org/10.1007/s12035-018-1342-z (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinney, J. W. et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dementia (NY) 4, 575–590. https://doi.org/10.1016/j.trci.2018.06.014 (2018).

    Article 

    Google Scholar
     

  • Shirai, Y. & Saito, N. Diacylglycerol kinase as a possible therapeutic target for neuronal diseases. J. Biomed. Sci. 21, 28. https://doi.org/10.1186/1423-0127-21-28 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschey, M. D., Shimazu, T., Huang, J. Y., Schwer, B. & Verdin, E. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb. Symp Quant. Biol. 76, 267–277. https://doi.org/10.1101/sqb.2011.76.010850 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lantier, L. et al. SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice. Diabetes 64, 3081–3092. https://doi.org/10.2337/db14-1810 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elseweidy, M. M., Amin, R. S., Atteia, H. H. & Ali, M. A. Vitamin D3 intake as regulator of insulin degrading enzyme and insulin receptor phosphorylation in diabetic rats. Biomed. Pharmacother. 85, 155–159. https://doi.org/10.1016/j.biopha.2016.11.116 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemming, M. L. & Selkoe, D. J. Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 280, 37644–37650. https://doi.org/10.1074/jbc.M508460200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farris, W. et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162–4167. https://doi.org/10.1073/pnas.0230450100 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fracassi, A. et al. Oxidative damage and antioxidant response in frontal cortex of demented and nondemented individuals with alzheimer’s neuropathology. J. Neurosci. 41, 538–554. https://doi.org/10.1523/JNEUROSCI.0295-20.2020 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, A. & Reddy, P. H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta P-tau and mitochondria. Ageing Res. Rev. 65, 101208. https://doi.org/10.1016/j.arr.2020.101208 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morton, H. et al. Defective mitophagy and synaptic degeneration in Alzheimer’s disease: Focus on aging, mitochondria and synapse. Free Radic. Biol. Med. 172, 652–667. https://doi.org/10.1016/j.freeradbiomed.2021.07.013 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heni, M., Kullmann, S., Preissl, H., Fritsche, A. & Haring, H. U. Impaired insulin action in the human brain: Causes and metabolic consequences. Nat. Rev. Endocrinol. 11, 701–711. https://doi.org/10.1038/nrendo.2015.173 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White, L. R. et al. Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia aging studies. Neurology 86, 1000–1008. https://doi.org/10.1212/WNL.0000000000002480 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magister, S. & Kos, J. Cystatins in immune system.. J. Cancer 4, 45–56. https://doi.org/10.7150/jca.5044 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinser, E., Lechmann, M., Golka, A., Lutz, M. B. & Steinkasserer, A. Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J. Exp. Med. 200, 345–351. https://doi.org/10.1084/jem.20030973 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wlodarczyk, A., Lobner, M., Cedile, O. & Owens, T. Comparison of microglia and infiltrating CD11c(+) cells as antigen presenting cells for T cell proliferation and cytokine response. J. Neuroinflammation 11, 57. https://doi.org/10.1186/1742-2094-11-57 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parkin, E. T. et al. Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc. Natl. Acad. Sci. USA 104, 11062–11067. https://doi.org/10.1073/pnas.0609621104 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haure-Mirande, J. V. et al. Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta Neuropathol. 134, 769–788. https://doi.org/10.1007/s00401-017-1737-3 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C. et al. SERPINA3K plays antioxidant roles in cultured pterygial epithelial cells through regulating ROS system. PLoS ONE 9, e108859. https://doi.org/10.1371/journal.pone.0108859 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Z. et al. Low-fat diet with caloric restriction reduces white matter microglia activation during aging. Front. Mol. Neurosci. 11, 65. https://doi.org/10.3389/fnmol.2018.00065 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurochkin, I. V., Guarnera, E. & Berezovsky, I. N. Insulin-degrading enzyme in the fight against Alzheimer’s disease. Trends Pharmacol. Sci. 39, 49–58. https://doi.org/10.1016/j.tips.2017.10.008 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Casimiro, C. M. et al. Modulation of insulin sensitivity by insulin-degrading enzyme. Biomedicines 9, 86. https://doi.org/10.3390/biomedicines9010086 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leissring, M. A. et al. Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem. J. 383, 439–446. https://doi.org/10.1042/BJ20041081 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, E. S. et al. Inositol phosphates and phosphoinositides activate insulin-degrading enzyme, while phosphoinositides also mediate binding to endosomes. Proc. Natl. Acad. Sci. USA 114, E2826–E2835. https://doi.org/10.1073/pnas.1613447114 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q., Ali, M. A. & Cohen, J. I. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell 127, 305–316. https://doi.org/10.1016/j.cell.2006.08.046 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berarducci, B. et al. Functions of the unique N-terminal region of glycoprotein E in the pathogenesis of varicella-zoster virus infection. Proc. Natl. Acad. Sci. USA 107, 282–287. https://doi.org/10.1073/pnas.0912373107 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kupfer, S. R., Wilson, E. M. & French, F. S. Androgen and glucocorticoid receptors interact with insulin degrading enzyme. J. Biol. Chem. 269, 20622–20628 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, S. K., Chorell, E. & Wittung-Stafshede, P. Insulin-degrading enzyme is activated by the C-terminus of alpha-synuclein. Biochem. Biophys. Res. Commun. 466, 192–195. https://doi.org/10.1016/j.bbrc.2015.09.002 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahuja, N. et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583–33592. https://doi.org/10.1074/jbc.M705488200 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pugazhenthi, S., Wang, M., Pham, S., Sze, C. I. & Eckman, C. B. Downregulation of CREB expression in Alzheimer’s brain and in Abeta-treated rat hippocampal neurons. Mol. Neurodegener. 6, 60. https://doi.org/10.1186/1750-1326-6-60 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ertekin-Taner, N. et al. Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum. Mutat. 23, 334–342. https://doi.org/10.1002/humu.20016 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjork, B. F. et al. Positive association between risk for late-onset Alzheimer disease and genetic variation in IDE. Neurobiol. Aging 28, 1374–1380. https://doi.org/10.1016/j.neurobiolaging.2006.06.017 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vepsalainen, S. et al. Insulin-degrading enzyme is genetically associated with Alzheimer’s disease in the finnish population. J. Med. Genet. 44, 606–608. https://doi.org/10.1136/jmg.2006.048470 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, F. et al. Exploration of 16 candidate genes identifies the association of IDE with Alzheimer’s disease in Han Chinese. Neurobiol. Aging 33(1014), e1011-1019. https://doi.org/10.1016/j.neurobiolaging.2010.08.004 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Insulin degrading enzyme contributes to the pathology in a mixed model of type 2 diabetes and Alzheimer’s disease: Possible mechanisms of IDE in T2D and AD. Biosci. Rep. https://doi.org/10.1042/BSR20170862 (2018).

  • Stargardt, A. et al. Reduced amyloid-beta degradation in early Alzheimer’s disease but not in the APPswePS1dE9 and 3xTg-AD mouse models. Aging Cell 12, 499–507. https://doi.org/10.1111/acel.12074 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leissring, M. A. et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087–1093. https://doi.org/10.1016/s0896-6273(03)00787-6 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leal, M. C. et al. Transcriptional regulation of insulin-degrading enzyme modulates mitochondrial amyloid beta (Abeta) peptide catabolism and functionality. J. Biol. Chem. 288, 12920–12931. https://doi.org/10.1074/jbc.M112.424820 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurauti, M. A. et al. Acute exercise improves insulin clearance and increases the expression of insulin-degrading enzyme in the liver and skeletal muscle of swiss mice. PLoS ONE 11, e0160239. https://doi.org/10.1371/journal.pone.0160239 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, A. et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab. 23, 128–142. https://doi.org/10.1016/j.cmet.2015.10.013 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramesh, S. et al. SIRT3 activator Honokiol attenuates beta-Amyloid by modulating amyloidogenic pathway. PLoS ONE 13, e0190350. https://doi.org/10.1371/journal.pone.0190350 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahalkova, J. Focus on molecular functions of anti-aging deacetylase SIRT3. Biochemistry (Mosc) 87, 21–34. https://doi.org/10.1134/S0006297922010035 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fakhrai-Rad, H. et al. Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. Hum. Mol. Genet. 9, 2149–2158. https://doi.org/10.1093/hmg/9.14.2149 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Diaz, C. M. et al. Pancreatic beta-cell-specific deletion of insulin-degrading enzyme leads to dysregulated insulin secretion and beta-cell functional immaturity. Am. J. Physiol. Endocrinol. Metab. 317, E805–E819. https://doi.org/10.1152/ajpendo.00040.2019 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deprez-Poulain, R. et al. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice. Nat. Commun. 6, 8250. https://doi.org/10.1038/ncomms9250 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Casimiro, C. M. et al. Effects of fasting and feeding on transcriptional and posttranscriptional regulation of insulin-degrading enzyme in mice. Cells 10, 2446. https://doi.org/10.3390/cells10092446 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471. https://doi.org/10.1016/j.tcb.2014.04.002 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verdin, E. NAD(+) in aging, metabolism, and neurodegeneration. Science 350, 1208–1213. https://doi.org/10.1126/science.aac4854 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, B. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1alpha regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588. https://doi.org/10.1016/j.neurobiolaging.2012.12.005 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trammell, S. A. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci. Rep. 6, 26933. https://doi.org/10.1038/srep26933 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, Y. et al. NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc. Natl. Acad. Sci. USA 118, e2011226118. https://doi.org/10.1073/pnas.2011226118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurauti, M. A. et al. Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci. Rep. 7, 46750. https://doi.org/10.1038/srep46750 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, B. T. et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. https://doi.org/10.1093/nar/gkac194 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    EHS
    Back to top button