EHS
EHS

Altered functional responses by PAR1 agonist in murine dextran sodium sulphate-treated colon


  • Bharucha, A. E. Lower gastrointestinal functions. Neurogastroenterol. Motil. 20(Suppl 1), 103–113. https://doi.org/10.1111/j.1365-2982.2008.01111.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Rogler, G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 345, 235–241. https://doi.org/10.1016/j.canlet.2013.07.032 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sanders, K. M., Koh, S. D., Ro, S. & Ward, S. M. Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9, 633–645. https://doi.org/10.1038/nrgastro.2012.168 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, K. M., Kito, Y., Hwang, S. J. & Ward, S. M. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology (Bethesda) 31, 316–326. https://doi.org/10.1152/physiol.00006.2016 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Sanders, K. M., Ward, S. M. & Koh, S. D. Interstitial cells: Regulators of smooth muscle function. Physiol. Rev. 94, 859–907. https://doi.org/10.1152/physrev.00037.2013 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernardini, N. et al. Immunohistochemical analysis of myenteric ganglia and interstitial cells of Cajal in ulcerative colitis. J. Cell Mol. Med. 16, 318–327. https://doi.org/10.1111/j.1582-4934.2011.01298.x (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blair, P. J., Rhee, P. L., Sanders, K. M. & Ward, S. M. The significance of interstitial cells in neurogastroenterology. J. Neurogastroenterol. Motil. 20, 294–317. https://doi.org/10.5056/jnm14060 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakahara, M. et al. Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor. Life Sci. 70, 2367–2376. https://doi.org/10.1016/s0024-3205(02)01517-5 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kurahashi, M. et al. A functional role for the “fibroblast-like cells” in gastrointestinal smooth muscles. J. Physiol. 589, 697–710. https://doi.org/10.1113/jphysiol.2010.201129 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kurahashi, M., Mutafova-Yambolieva, V., Koh, S. D. & Sanders, K. M. Platelet-derived growth factor receptor-alpha-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am. J. Physiol. Cell Physiol. 307, C561–C570. https://doi.org/10.1152/ajpcell.00080.2014 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallego, D., Hernandez, P., Clave, P. & Jimenez, M. P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G584–G594. https://doi.org/10.1152/ajpgi.00474.2005 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mutafova-Yambolieva, V. N. et al. Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 104, 16359–16364. https://doi.org/10.1073/pnas.0705510104 (2007).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, N. N. et al. Diabetes-induced colonic slow transit mediated by the up-regulation of PDGFRalpha(+) cells/SK3 in streptozotocin-induced diabetic mice. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13326 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sung, T. S. et al. Protease-activated receptors modulate excitability of murine colonic smooth muscles by differential effects on interstitial cells. J. Physiol. 593, 1169–1181. https://doi.org/10.1113/jphysiol.2014.285148 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, T. S. et al. The functional role of protease-activated receptors on contractile responses by activation of Ca(2+) sensitization pathways in simian colonic muscles. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G921–G931. https://doi.org/10.1152/ajpgi.00255.2018 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, K., Ninomiya, H., Ohkura, S., Ozaki, H. & Nasu, T. Impairment of PAR-2-mediated relaxation system in colonic smooth muscle after intestinal inflammation. Br. J. Pharmacol. 148, 200–207. https://doi.org/10.1038/sj.bjp.0706717 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirsner, J. B. Inflammatory Bowel Disease 5th edn. (Saunders, 2000).


    Google Scholar
     

  • Bustos, D. et al. Colonic proteinases: Increased activity in patients with ulcerative colitis. Medicina (B Aires) 58, 262–264 (1998).

    CAS 

    Google Scholar
     

  • Kjeldsen, J., Lassen, J. F., Brandslund, I. & de Muckadell, O. B. S. Markers of coagulation and fibrinolysis as measures of disease activity in inflammatory bowel disease. Scand. J. Gastroenterol. 33, 637–643 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 11–14. https://doi.org/10.1002/0471142735.im1525s104 (2014).

    Article 

    Google Scholar
     

  • Coughlin, S. R. & Camerer, E. PARticipation in inflammation. J. Clin. Investig. 111, 25–27. https://doi.org/10.1172/JCI17564 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vergnolle, N., Wallace, J. L., Bunnett, N. W. & Hollenberg, M. D. Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol. Sci. 22, 146–152 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Corvera, C. U. et al. Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol. 517(Pt 3), 741–756. https://doi.org/10.1111/j.1469-7793.1999.0741s.x (1999).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mule, F., Baffi, M. C. & Cerra, M. C. Dual effect mediated by protease-activated receptors on the mechanical activity of rat colon. Br. J. Pharmacol. 136, 367–374. https://doi.org/10.1038/sj.bjp.0704746 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mule, F., Baffi, M. C., Falzone, M. & Cerra, M. C. Signal transduction pathways involved in the mechanical responses to protease-activated receptors in rat colon. J. Pharmacol. Exp. Ther. 303, 1265–1272. https://doi.org/10.1124/jpet.102.041301 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cocks, T. M., Sozzi, V., Moffatt, J. D. & Selemidis, S. Protease-activated receptors mediate apamin-sensitive relaxation of mouse and guinea pig gastrointestinal smooth muscle. Gastroenterology 116, 586–592 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Kawabata, A. et al. In vivo evidence that protease-activated receptors 1 and 2 modulate gastrointestinal transit in the mouse. Br. J. Pharmacol. 133, 1213–1218. https://doi.org/10.1038/sj.bjp.0704211 (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, M. H. et al. A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J. Physiol. 587, 4905–4918. https://doi.org/10.1113/jphysiol.2009.176206 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, M. H. et al. Muscarinic activation of Ca2+-activated Cl-current in interstitial cells of Cajal. J. Physiol. 589, 4565–4582. https://doi.org/10.1113/jphysiol.2011.211094 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, S. J. et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J. Physiol. 587, 4887–4904. https://doi.org/10.1113/jphysiol.2009.176198 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernardazzi, C., Pego, B. & de Souza, H. S. Neuroimmunomodulation in the gut: Focus on inflammatory bowel disease. Mediat. Inflamm. 2016, 1363818. https://doi.org/10.1155/2016/1363818 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Linden, D. R., Manning, B. P., Bunnett, N. W. & Mawe, G. M. Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons. Eur. J. Pharmacol. 431, 311–314. https://doi.org/10.1016/s0014-2999(01)01447-9 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Reed, D. E. et al. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J. Physiol. 547, 531–542. https://doi.org/10.1113/jphysiol.2002.032011 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eichele, D. D. & Kharbanda, K. K. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 23, 6016–6029. https://doi.org/10.3748/wjg.v23.i33.6016 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ihara, E., Chappellaz, M., Turner, S. R. & MacDonald, J. A. The contribution of protein kinase C and CPI-17 signaling pathways to hypercontractility in murine experimental colitis. Neurogastroenterol. Motil. 24, e15–e26. https://doi.org/10.1111/j.1365-2982.2011.01821.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ohama, T. et al. Downregulation of CPI-17 contributes to dysfunctional motility in chronic intestinal inflammation model mice and ulcerative colitis patients. J. Gastroenterol. 43, 858–865. https://doi.org/10.1007/s00535-008-2241-2 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sato, K. et al. Involvement of CPI-17 downregulation in the dysmotility of the colon from dextran sodium sulphate-induced experimental colitis in a mouse model. Neurogastroenterol. Motil. 19, 504–514. https://doi.org/10.1111/j.1365-2982.2007.00911.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Akiho, H., Deng, Y., Blennerhassett, P., Kanbayashi, H. & Collins, S. M. Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction. Gastroenterology 129, 131–141. https://doi.org/10.1053/j.gastro.2005.03.049 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kiesler, P., Fuss, I. J. & Strober, W. Experimental models of inflammatory bowel diseases. Cell Mol. Gastroenterol. Hepatol. 1, 154–170. https://doi.org/10.1016/j.jcmgh.2015.01.006 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohama, T., Hori, M. & Ozaki, H. Mechanism of abnormal intestinal motility in inflammatory bowel disease: How smooth muscle contraction is reduced? J. Smooth Muscle Res. 43, 43–54. https://doi.org/10.1540/jsmr.43.43 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 25. https://doi.org/10.1002/0471142735.im1525s104 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Perrino, B. A. Calcium sensitization mechanisms in gastrointestinal smooth muscles. J. Neurogastroenterol. Motil. 22, 213–225. https://doi.org/10.5056/jnm15186 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eto, M., Senba, S., Morita, F. & Yazawa, M. Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: Its specific localization in smooth muscle. FEBS Lett. 410, 356–360. https://doi.org/10.1016/s0014-5793(97)00657-1 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cooper, H. S., Murthy, S. N., Shah, R. S. & Sedergran, D. J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Investig. 69, 238–249 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Koh, S. D. et al. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc. Natl. Acad. Sci. U.S.A. 119, e2123020119. https://doi.org/10.1073/pnas.2123020119 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bhetwal, B. P. et al. Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. J. Physiol. 591, 2971–2986. https://doi.org/10.1113/jphysiol.2013.255745 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. A role for focal adhesion kinase in facilitating the contractile responses of murine gastric fundus smooth muscles. J. Physiol. 596, 2131–2146. https://doi.org/10.1113/JP275406 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    EHS
    Back to top button