EHS
EHS

Metabolic remodeling of pyrimidine synthesis pathway and serine synthesis pathway in human glioblastoma


  • Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol. 22, iv1–iv96 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Stupp, R. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 318, 2306–2316 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J., Cowperthwaite, M. C., Burnett, M. G. & Shpak, M. Molecular predictors of long-term survival in glioblastoma multiforme patients. PLoS ONE 11, e0154313 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strickland, M. & Stoll, E. A. Metabolic reprogramming in glioma. Front. Cell Dev. Biol. 5, 43 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Squatrito, M. & Holland, E. C. DNA damage response and growth factor signaling pathways in gliomagenesis and therapeutic resistance. Cancer Res. 71, 5945–5949 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Scott, B. J. et al. Bevacizumab salvage therapy following progression in high-grade glioma patients treated with VEGF receptor tyrosine kinase inhibitors. Neuro Oncol. 12, 603–607 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellinghoff, I. K., Lassman, A. B. & Wen, P. Y. Signal transduction inhibitors and antiangiogenic therapies for malignant glioma. Glia 59, 1205–1212 (2011).

    PubMed 

    Google Scholar
     

  • Reardon, D. A. et al. Immunotherapy advances for glioblastoma. Neuro Oncol. 16, 1441–1458 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vander Heiden, M. G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Mattaini, K. R., Sullivan, M. R. & Vander Heiden, M. G. The importance of serine metabolism in cancer. J. Cell Biol. 214, 249–257 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto, M. et al. A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nat. Methods 14, 251–258 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kamburov, A., Cavill, R., Ebbels, T. M. D., Herwig, R. & Keun, H. C. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27, 2917–2918 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Riedel, R. F. et al. A genomic approach to identify molecular pathways associated with chemotherapy resistance. Mol. Cancer Ther. 7, 3141–3149 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Sabatine, M. S. et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112, 3868–3875 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Rabinovich, S. et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527, 379–383 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Wang, X., Xu, L., Zhang, J. & Cao, H. High expression levels of pyrimidine metabolic rate–limiting enzymes are adverse prognostic factors in lung adenocarcinoma: A study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. Purinergic Signal 16, 347–366 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, H.-W., Lee, S.-S., Chang, C.-Y., Hu, C.-M. & Jou, Y.-S. Pyrimidine metabolic rate limiting enzymes in poorly-differentiated hepatocellular carcinoma are signature genes of cancer stemness and associated with poor prognosis. Oncotarget 8, 77734–77751 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, T. W. M. et al. De novo synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues. J. Biol. Chem. 294, 13464–13477 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engström, Y. et al. Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J. Biol. Chem. 260, 9114–9116 (1985).

    PubMed 

    Google Scholar
     

  • Zhu, C. et al. Prognostic value of ribonucleotide reductase subunit M1 (RRM1) in non-small cell lung cancer: A meta-analysis. Clin. Chim. Acta 485, 67–73 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz-Montaño, W. et al. RRM1 and ERCC1 as biomarkers in patients with locally advanced and metastatic malignant pleural mesothelioma treated with continuous infusion of low-dose gemcitabine plus cisplatin. BMC Cancer 21, 892 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steeg, P. S. et al. Evidence for a novel gene associated with low tumor metastatic potential. J. Natl. Cancer Inst. 80, 200–204 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. NME1 drives expansion of melanoma cells with enhanced tumor growth and metastatic properties. Mol. Cancer Res. 17, 1665–1674 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lombardi, D., Lacombe, M.-L. & Paggi, M. G. nm23: Unraveling its biological function in cell differentiation. J. Cell Physiol. 182, 144–149 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Desvignes, T., Pontarotti, P., Fauvel, C. & Bobe, J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol. Biol. 9, 256 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Noesel, M. M. & Versteeg, R. Pediatric neuroblastomas: Genetic and epigenetic ‘danse macabre’. Gene 325, 1–15 (2004).

    PubMed 

    Google Scholar
     

  • Garcia, I. et al. A three-gene expression signature model for risk stratification of patients with neuroblastoma. Clin. Cancer Res. 18, 2012–2023 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tschiedel, S. et al. Identification of NM23-H2 as a tumour-associated antigen in chronic myeloid leukaemia. Leukemia 22, 1542–1550 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Cantor, J. R. & Sabatini, D. M. Cancer cell metabolism: One hallmark, many faces. Cancer Discov. 2, 881–898 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tennant, D. A., Durán, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Prakasam, G., Iqbal, M. A., Bamezai, R. N. K. & Mazurek, S. Posttranslational modifications of pyruvate kinase M2: Tweaks that benefit cancer. Front. Oncol. 8, 22 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeNicola, G. M. et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 47, 1475–1481 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engel, A. L. et al. Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br. J. Cancer 122, 1391–1398 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palacín, M., Estévez, R., Bertran, J. & Zorzano, A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78, 969–1054 (1998).

    PubMed 

    Google Scholar
     

  • Snell, K. & Weber, G. Enzymic imbalance in serine metabolism in rat hepatomas. Biochem. J. 233, 617–620 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locasale, J. W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zogg, C. K. Phosphoglycerate dehydrogenase: Potential therapeutic target and putative metabolic oncogene. J. Oncol. 2014, 524101 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuvalov, O. et al. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 8, 23955–23977 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M. & Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samanta, D. & Semenza, G. L. Serine synthesis helps hypoxic cancer stem cells regulate redox. Cancer Res. 76, 6458–6462 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Reyes, I. & Chandel, N. S. Mitochondrial one-carbon metabolism maintains redox balance during hypoxia. Cancer Discov. 4, 1371–1373 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamanaka, R. B. & Chandel, N. S. Targeting glucose metabolism for cancer therapy. J. Exp. Med. 209, 211–215 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Phosphoglycerate dehydrogenase is dispensable for breast tumor maintenance and growth. Oncotarget 4, 2502–2511 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. J. Neurooncol. 111, 245–255 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, M.-Y. et al. Phosphoserine phosphatase as a prognostic biomarker in patients with gastric cancer and its potential association with immune cells. BMC Gastroenterol. 22, 1 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narkewicz, M. R., Sauls, S. D., Tjoa, S. S., Teng, C. & Fennessey, P. V. Evidence for intracellular partitioning of serine and glycine metabolism in Chinese hamster ovary cells. Biochem. J. 313(Pt 3), 991–996 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui, D. Y., Lewis, C. A. & Vander Heiden, M. G. Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci. Signal. 6, pe7 (2013).

    PubMed 

    Google Scholar
     

  • Keller, K. E., Tan, I. S. & Lee, Y.-S. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338, 1069–1072 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kodama, M. et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat. Commun. 11, 1320 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).


    Google Scholar
     

  • Gravendeel, L. A. M. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 69, 9065–9072 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241–247 (2014).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    EHS
    Back to top button