EHS
EHS

Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome


  • Drossman, D. A. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology 150, 1262–1279 (2016).

    Article 

    Google Scholar
     

  • Sperber, A. D. et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology 160, 99–114 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Mearin, F. et al. Bowel disorders. Gastroenterology 150, 1393–1407 (2016).

    Article 

    Google Scholar
     

  • Vanuytsel, T., Tack, J. F. & Boeckxstaens, G. E. Treatment of abdominal pain in irritable bowel syndrome. J. Gastroenterol. 49, 1193–1205 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Simren, M. et al. Visceral hypersensitivity is associated with GI symptom severity in functional GI disorders: consistent findings from five different patient cohorts. Gut 67, 255–262 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Drossman, D. A. et al. Neuromodulators for functional gastrointestinal disorders (disorders of gut-brain interaction): a Rome Foundation Working Team Report. Gastroenterology 154, 1140–1171 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Cohen, L. & Neuman, M. G. Cannabis and the gastrointestinal tract. J. Pharm. Pharm. Sci. 23, 301–313 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Gotfried, J., Naftali, T. & Schey, R. Role of cannabis and its derivatives in gastrointestinal and hepatic disease. Gastroenterology 159, 62–80 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nasser, Y., Woo, M. & Andrews, C. N. Cannabis in gastroenterology: watch your head! A review of use in inflammatory bowel disease, functional gut disorders, and gut-related adverse effects. Curr. Treat. Options Gastroenterol. 18, 519–530 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • DiPatrizio, N. V. Endocannabinoids in the gut. Cannabis Cannabinoid Res. 1, 67–77 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maselli, D. B. & Camilleri, M. Pharmacology, clinical effects, and therapeutic potential of cannabinoids for gastrointestinal and liver diseases. Clin. Gastroenterol. Hepatol. 19, 1748–1758 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharkey, K. A. & Wiley, J. W. The role of the endocannabinoid system in the brain-gut axis. Gastroenterology 151, 252–266 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pesce, M., Esposito, G. & Sarnelli, G. Endocannabinoids in the treatment of gasytrointestinal inflammation and symptoms. Curr. Opin. Pharmacol. 43, 81–86 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storr, M. A., Yuce, B., Andrews, C. N. & Sharkey, K. A. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. Neurogastroenterol. Motil. 20, 857–868 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mechoulam, R., Hanus, L. O., Pertwee, R. & Howlett, A. C. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat. Rev. Neurosci. 15, 757–764 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 17, 623–639 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Fowler, C. J., Doherty, P. & Alexander, S. P. H. Endocannabinoid turnover. Adv. Pharmacol. 80, 31–66 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blankman, J. L. & Cravatt, B. F. Chemical probes of endocannabinoid metabolism. Pharmacol. Rev. 65, 849–871 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Egmond, N., Straub, V. M. & van der Stelt, M. Targeting endocannabinoid signaling: FAAH and MAG lipase inhibitors. Annu. Rev. Pharmacol. Toxicol. 61, 441–463 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Hill, M. N. & Patel, S. Translational evidence for the involvement of the endocannabinoid system in stress-related psychiatric illnesses. Biol. Mood Anxiety Disord. 3, 19 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lutz, B., Marsicano, G., Maldonado, R. & Hillard, C. J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16, 705–718 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaczocha, M., Glaser, S. T. & Deutsch, D. G. Identification of intracellular carriers for the endocannabinoid anandamide. Proc. Natl Acad. Sci. USA 106, 6375–6380 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haj-Dahmane, S. et al. Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc. Natl Acad. Sci. USA 115, 3482–3487 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cristino, L., Bisogno, T. & Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16, 9–29 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Abyadeh, M. et al. A proteomic view of cellular and molecular effects of cannabis. Biomolecules 11, 1411 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hua, T. et al. Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures. Cell 180, 655–665 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krishna Kumar, K. et al. Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176, 448–458 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, X. et al. Crystal structure of the human cannabinoid receptor CB2. Cell 176, 459–467 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moreira, F. A., Grieb, M. & Lutz, B. Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. Best Pract. Res. Clin. Endocrinol. Metab. 23, 133–144 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jimenez-Blasco, D. et al. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 583, 603–608 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soria-Gomez, E. et al. Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron 109, 1513–1526 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duncan, M. et al. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G78–G87 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Merriam, F. V., Wang, Z. Y., Guerios, S. D. & Bjorling, D. E. Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats. Neurosci. Lett. 445, 130–134 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wright, K. et al. Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 129, 437–453 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Han, S., Thatte, J., Buzard, D. J. & Jones, R. M. Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists. J. Med. Chem. 56, 8224–8256 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castro, J. et al. Olorinab (APD371), a peripherally acting, highly selective, full agonist of the cannabinoid receptor 2, reduces colitis-induced acute and chronic visceral hypersensitivity in rodents. Pain 163, e72–e86 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jordan, C. J. & Xi, Z. X. Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci. Biobehav. Rev. 98, 208–220 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Howlett, A. C. & Abood, M. E. CB1 and CB2 receptor pharmacology. Adv. Pharmacol. 80, 169–206 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lutz, B. Neurobiology of cannabinoid receptor signaling. Dialogues Clin. Neurosci. 22, 207–222 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Booth, W. T., Walker, N. B., Lowther, W. T. & Howlett, A. C. Cannabinoid receptor interacting protein 1a (CRIP1a): function and structure. Molecules 24, 3672 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Camilleri, M. Cannabinoids and gastrointestinal motility: pharmacology, clinical effects, and potential therapeutics in humans. Neurogastroenterol. Motil. 30, e13370 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Izzo, A. A. & Sharkey, K. A. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol. Ther. 126, 21–38 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hons, I. M. et al. Plasticity of mouse enteric synapses mediated through endocannabinoid and purinergic signaling. Neurogastroenterol. Motil. 24, e113–e124 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boesmans, W., Ameloot, K., van den Abbeel, V., Tack, J. & Vanden Berghe, P. Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones. Neurogastroenterol. Motil. 21, 958–e77 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fichna, J., Sibaev, A., Salaga, M., Sobczak, M. & Storr, M. The cannabinoid-1 receptor inverse agonist taranabant reduces abdominal pain and increases intestinal transit in mice. Neurogastroenterol. Motil. 25, e550–e559 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storr, M. A. et al. Differential effects of CB1 neutral antagonists and inverse agonists on gastrointestinal motility in mice. Neurogastroenterol. Motil. 22, 787–796 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang, Y., Nie, Y., Li, Y. & Zhang, L. Association of cannabinoid type 1 receptor and fatty acid amide hydrolase genetic polymorphisms in Chinese patients with irritable bowel syndrome. J. Gastroenterol. Hepatol. 29, 1186–1191 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wong, B. S. et al. Pharmacogenetic trial of a cannabinoid agonist shows reduced fasting colonic motility in patients with nonconstipated irritable bowel syndrome. Gastroenterology 141, 1638–1647 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bashashati, M. et al. Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice. Br. J. Pharmacol. 165, 1556–1571 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kimball, E. S., Wallace, N. H., Schneider, C. R., D’Andrea, M. R. & Hornby, P. J. Small intestinal cannabinoid receptor changes following a single colonic insult with oil of mustard in mice. Front. Pharmacol. 1, 132 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin, M., Chen, L., Xiao, Y. & Yu, B. Activation of cannabinoid 2 receptor relieves colonic hypermotility in a rat model of irritable bowel syndrome. Neurogastroenterol. Motil. 31, e13555 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Bashashati, M. et al. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br. J. Pharmacol. 172, 3099–3111 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crowe, M. S. & Kinsey, S. G. MAGL inhibition modulates gastric secretion and motility following NSAID exposure in mice. Eur. J. Pharmacol. 807, 198–204 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fichna, J. et al. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol. Motil. 26, 470–481 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taschler, U. et al. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic mu-opioid receptor sensitivity. Br. J. Pharmacol. 172, 4419–4429 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Capasso, R. et al. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB(1) receptors and TRPV1 channels. Br. J. Pharmacol. 171, 4026–4037 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, S. C., Wang, W. L., Su, P. J., Jiang, K. L. & Yuan, Z. W. Decreased enteric fatty acid amide hydrolase activity is associated with colonic inertia in slow transit constipation. J. Gastroenterol. Hepatol. 29, 276–283 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Camilleri, M. et al. Genetic variation in endocannabinoid metabolism, gastrointestinal motility, and sensation. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G13–G19 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ameloot, K. et al. Endocannabinoid control of gastric sensorimotor function in man. Aliment. Pharmacol. Ther. 31, 1123–1131 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Scarpellini, E. et al. Effect of rimonabant on oesophageal motor function in man. Aliment. Pharmacol. Ther. 33, 730–737 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tack, J. et al. The gastrointestinal tract in hunger and satiety signalling. UEG J. 9, 727–734 (2021).

    Article 

    Google Scholar
     

  • Tyler, K., Hillard, C. J. & Greenwood-Van Meerveld, B. Inhibition of small intestinal secretion by cannabinoids is CB1 receptor-mediated in rats. Eur. J. Pharmacol. 409, 207–211 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • MacNaughton, W. K. et al. Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G863–G871 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Izzo, A. A. et al. An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice. Gastroenterology 125, 765–774 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alhamoruni, A., Lee, A. C., Wright, K. L., Larvin, M. & O’Sullivan, S. E. Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. J. Pharmacol. Exp. Ther. 335, 92–102 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alhamoruni, A., Wright, K. L., Larvin, M. & O’Sullivan, S. E. Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability. Br. J. Pharmacol. 165, 2598–2610 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karwad, M. A. et al. The role of CB1 in intestinal permeability and inflammation. FASEB J. 31, 3267–3277 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muccioli, G. G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6, 392 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dothel, G. et al. micro-opioid receptor, beta-endorphin, and cannabinoid receptor-2 are increased in the colonic mucosa of irritable bowel syndrome patients. Neurogastroenterol. Motil. 31, e13688 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cabral, G. A., Ferreira, G. A. & Jamerson, M. J. Endocannabinoids and the immune system in health and disease. Handb. Exp. Pharmacol. 231, 185–211 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duffy, S. S., Hayes, J. P., Fiore, N. T. & Moalem-Taylor, G. The cannabinoid system and microglia in health and disease. Neuropharmacology 190, 108555 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turcotte, C., Blanchet, M. R., Laviolette, M. & Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell Mol. Life Sci. 73, 4449–4470 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brierley, S. M. & Linden, D. R. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 11, 611–627 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Storr, M. A. et al. Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm. Bowel Dis. 15, 1678–1685 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Leinwand, K. L. et al. Cannabinoid receptor-2 ameliorates inflammation in murine model of Crohn’s disease. J. Crohns Colitis 11, 1369–1380 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cremon, C. et al. Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment. Pharmacol. Ther. 45, 909–922 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alhouayek, M., Ameraoui, H. & Muccioli, G. G. Bioactive lipids in inflammatory bowel diseases – from pathophysiological alterations to therapeutic opportunities. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 158854 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Picardo, S., Kaplan, G. G., Sharkey, K. A. & Seow, C. H. Insights into the role of cannabis in the management of inflammatory bowel disease. Ther. Adv. Gastroenterol. 12, 1756284819870977 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Fichna, J. et al. Cannabinoids alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors. PLoS ONE 9, e109115 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Szabady, R. L. et al. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J. Clin. Invest. 128, 4044–4056 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Foley, S. E. et al. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome 9, 183 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brusberg, M. et al. CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. J. Neurosci. 29, 1554–1564 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hong, S. et al. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 58, 202–210 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iwata, Y. et al. Identification of a highly potent and selective CB2 agonist, RQ-00202730, for the treatment of irritable bowel syndrome. Bioorg. Med. Chem. Lett. 25, 236–240 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kikuchi, A., Ohashi, K., Sugie, Y., Sugimoto, H. & Omura, H. Pharmacological evaluation of a novel cannabinoid 2 (CB2) ligand, PF-03550096, in vitro and in vivo by using a rat model of visceral hypersensitivity. J. Pharmacol. Sci. 106, 219–224 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanson, M., Bueno, L. & Fioramonti, J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol. Motil. 18, 949–956 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naguib, M. et al. MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models. Br. J. Pharmacol. 155, 1104–1116 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Enck, P. et al. Irritable bowel syndrome. Nat. Rev. Dis. Prim. 2, 16014 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Shen, L., Yang, X. J., Qian, W. & Hou, X. H. The role of peripheral cannabinoid receptors type 1 in rats with visceral hypersensitivity induced by chronic restraint stress. J. Neurogastroenterol. Motil. 16, 281–290 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hillsley, K. et al. Activation of the cannabinoid 2 (CB2) receptor inhibits murine mesenteric afferent nerve activity. Neurogastroenterol. Motil. 19, 769–777 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sadeghi, M. et al. Contribution of membrane receptor signalling to chronic visceral pain. Int. J. Biochem. Cell Biol. 98, 10–23 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prato, V. et al. Functional and molecular characterization of mechanoinsensitive “Silent” nociceptors. Cell Rep. 21, 3102–3115 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schaefer, I., Prato, V., Arcourt, A., Taberner, F. J. & Lechner, S. G. Differential modulation of voltage-gated sodium channels by nerve growth factor in three major subsets of TrkA-expressing nociceptors. Mol. Pain 14, 1744806918814640 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dothel, G. et al. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 148, 1002–1011 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarnelli, G. et al. Impaired duodenal palmitoylethanolamide release underlies acid-induced mast cell activation in functional dyspepsia. Cell Mol. Gastroenterol. Hepatol. 11, 841–855 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aguilera-Lizarraga, J. et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590, 151–156 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Farquhar-Smith, W. P., Jaggar, S. I. & Rice, A. S. Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB1 and CB2-like receptors. Pain 97, 11–21 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cantarella, G. et al. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells. Biochem. Pharmacol. 82, 380–388 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Costa, B., Comelli, F., Bettoni, I., Colleoni, M. & Giagnoni, G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain 139, 541–550 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petrosino, S. et al. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J. Neuroinflammation 16, 274 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Domoto, R., Sekiguchi, F., Tsubota, M. & Kawabata, A. Macrophage as a peripheral pain regulator. Cells 10, 1881 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cattaruzza, F. et al. Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. Gastroenterology 141, 1864–1874 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jimenez-Vargas, N. N. et al. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc. Natl Acad. Sci. USA 115, E7438–E7447 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grubišić, V. et al. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep. 32, 108100 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Esposito, G. et al. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation. Gut 63, 1300–1312 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Acharya, N. et al. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. Proc. Natl Acad. Sci. USA 114, 5005–5010 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Basso, L. et al. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proc. Natl Acad. Sci. USA 114, 11235–11240 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yuan, T., Manohar, K., Latorre, R., Orock, A. & Greenwood-Van Meerveld, B. Inhibition of microglial activation in the amygdala reverses stress-induced abdominal pain in the male rat. Cell Mol. Gastroenterol. Hepatol. 10, 527–543 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yuan, T., Orock, A. & Greenwood-Van Meerveld, B. Amygdala microglia modify neuronal plasticity via complement C1q/C3-CR3 signaling and contribute to visceral pain in a rat model. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G1081–G1092 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, G. et al. Activation of corticotropin-releasing factor neurons and microglia in paraventricular nucleus precipitates visceral hypersensitivity induced by colorectal distension in rats. Brain Behav. Immun. 55, 93–104 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, G. et al. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats. Neuropharmacology 102, 295–303 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mayer, E. A., Labus, J. S., Tillisch, K., Cole, S. W. & Baldi, P. Towards a systems view of IBS. Nat. Rev. Gastroenterol. Hepatol. 12, 592–605 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martín-Pérez, C. et al. Endocannabinoid signaling of homeostatic status modulates functional connectivity in reward and salience networks. Psychopharmacology 239, 1311–1319 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Sisk, L. M. et al. Genetic variation in endocannabinoid signaling is associated with differential network-level functional connectivity in youth. J. Neurosci. Res. 100, 731–743 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yasmin, F. et al. Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala. Proc. Natl Acad. Sci. USA 117, 650–655 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Benedetti, F., Amanzio, M., Rosato, R. & Blanchard, C. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nat. Med. 17, 1228–1230 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peciña, M. et al. FAAH selectively influences placebo effects. Mol. Psychiatry 19, 385–391 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Enck, P. & Klosterhalfen, S. Placebo responses and Placebo effects in functional gastrointestinal disorders. Front. Psychiatry 11, 797 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meerveld, B. G. & Johnson, A. C. Mechanisms of stress-induced visceral pain. J. Neurogastroenterol. Motil. 24, 7–18 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Mahurkar-Joshi, S. & Chang, L. Epigenetic mechanisms in irritable bowel syndrome. Front. Psychiatry 11, 805 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McEwen, B. S. et al. Mechanisms of stress in the brain. Nat. Neurosci. 18, 1353–1363 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rusconi, F., Rubino, T. & Battaglioli, E. Endocannabinoid-epigenetic cross-talk: a bridge toward stress coping. Int. J. Mol. Sci. 21, 6252 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tran, L., Chaloner, A., Sawalha, A. H. & Greenwood Van-Meerveld, B. Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress. Psychoneuroendocrinology 38, 898–906 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hong, S., Zheng, G. & Wiley, J. W. Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology 148, 148–157 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osadchiy, V., Martin, C. R. & Mayer, E. A. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin. Gastroenterol. Hepatol. 17, 322–332 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome-a systematic review. Gastroenterology 157, 97–108 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Simren, M. et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62, 159–176 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Esquerre, N. et al. Colitis-induced microbial perturbation promotes postinflammatory visceral hypersensitivity. Cell Mol. Gastroenterol. Hepatol. 10, 225–244 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sugisawa, E. et al. RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis. Cell 182, 609–624 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anitha, M., Vijay-Kumar, M., Sitaraman, S. V., Gewirtz, A. T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brun, P. et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145, 1323–1333 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yarandi, S. S. et al. Intestinal bacteria maintain adult enteric nervous system and nitrergic neurons via Toll-like receptor 2-induced neurogenesis in mice. Gastroenterology 159, 200–213 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284–289 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lyte, M. Microbial endocrinology: an ongoing personal journey. Adv. Exp. Med. Biol. 874, 1–24 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharkey, K. A. & Savidge, T. C. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton. Neurosci. 181, 94–106 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DiPatrizio, N. V. & Piomelli, D. Intestinal lipid-derived signals that sense dietary fat. J. Clin. Invest. 125, 891–898 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Everard, A. et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat. Commun. 10, 457 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Castonguay-Paradis, S. et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 10, 15975 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Christie, S., O’Rielly, R., Li, H., Wittert, G. A. & Page, A. J. Biphasic effects of methanandamide on murine gastric vagal afferent mechanosensitivity. J. Physiol. 598, 139–150 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lacroix, S. et al. Rapid and concomitant gut microbiota and endocannabinoidome response to diet-induced obesity in mice. mSystems 4, e00407-19 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • DiPatrizio, N. V. et al. Fasting stimulates 2-AG biosynthesis in the small intestine: role of cholinergic pathways. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R805–R813 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hong, S. et al. Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology 140, 627–637 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Keenan, C. M. et al. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br. J. Pharmacol. 172, 2406–2418 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salaga, M. et al. The novel peripherally active cannabinoid type 1 and serotonin type 3 receptor agonist AM9405 inhibits gastrointestinal motility and reduces abdominal pain in mouse models mimicking irritable bowel syndrome. Eur. J. Pharmacol. 836, 34–43 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sticht, M. A. et al. Endocannabinoid regulation of homeostatic feeding and stress-induced alterations in food intake in male rats. Br. J. Pharmacol. 176, 1524–1540 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manca, C. et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J. Lipid Res. 61, 70–85 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manca, C. et al. Alterations of brain endocannabinoidome signaling in germ-free mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158786 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aguilera, M., Cerda-Cuellar, M. & Martinez, V. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice. Gut Microbes 6, 10–23 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aguilera, M., Vergara, P. & Martinez, V. Stress and antibiotics alter luminal and wall-adhered microbiota and enhance the local expression of visceral sensory-related systems in mice. Neurogastroenterol. Motil. 25, e515–e529 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guida, F. et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 67, 230–245 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rousseaux, C. et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13, 35–37 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Markey, L. et al. Colonization with the commensal fungus Candida albicans perturbs the gut-brain axis through dysregulation of endocannabinoid signaling. Psychoneuroendocrinology 121, 104808 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chevalier, G. et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun. 11, 6363 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Minichino, A. et al. Endocannabinoid system mediates the association between gut-microbial diversity and anhedonia/amotivation in a general population cohort. Mol. Psychiatry 26, 6269–6276 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cluny, N. L., Keenan, C. M., Reimer, R. A., Le Foll, B. & Sharkey, K. A. Prevention of diet-induced obesity effects on body weight and gut microbiota in mice treated chronically with Delta9-tetrahydrocannabinol. PLoS ONE 10, e0144270 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mehrpouya-Bahrami, P. et al. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep. 7, 15645 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oza, M. et al. Acute and short-term administrations of Δ-9-tetrahydrocannabinol modulate major gut metabolomic regulatory pathways in C57BL/6 mice. Sci. Rep. 9, 10520 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Ghezi, Z. Z., Busbee, P. B., Alghetaa, H., Nagarkatti, P. S. & Nagarkatti, M. Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav. Immun. 82, 25–35 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ellermann, M. et al. Endocannabinoids inhibit the induction of virulence in enteric pathogens. Cell 183, 650–665 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dione, N. et al. Mgll knockout mouse resistance to diet-induced dysmetabolism is associated with altered gut microbiota. Cells 9, 2705 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cani, P. D. et al. Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spiller, R. Impact of diet on symptoms of the irritable bowel syndrome. Nutrients 13, 575 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Uranga, J. A., Martínez, V. & Abalo, R. Mast cell regulation and irritable bowel syndrome: effects of food components with potential nutraceutical use. Molecules 25, 4314 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Di Marzo, V. & Silvestri, C. Lifestyle and metabolic syndrome: contribution of the endocannabinoidome. Nutrients 11, 1956 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kleberg, K., Hassing, H. A. & Hansen, H. S. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 40, 363–372 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hansen, H. S. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol. Res. 86, 18–25 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matias, I. et al. Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: effect of high fat diets. Mol. Cell Endocrinol. 286, S66–S78 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Diep, T. A. et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 25, 765–774 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Komarnytsky, S. et al. Endocannabinoid system and its regulation by polyunsaturated fatty acids and full spectrum hemp oils. Int. J. Mol. Sci. 22, 5479 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Larrieu, T. & Layé, S. Food for mood: relevance of nutritional omega-3 fatty acids for depression and anxiety. Front. Physiol. 9, 1047 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gigante, I. et al. Cannabinoid receptors overexpression in a rat model of irritable bowel syndrome (IBS) after treatment with a Ketogenic diet. Int. J. Mol. Sci. 22, 2880 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martínez, V. et al. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful nutraceuticals? Int. J. Mol. Sci. 21, 3067 (2020).

    PubMed Central 
    Article 

    Google Scholar
     

  • van Orten-Luiten, A. B., de Roos, N. M., Majait, S., Witteman, B. J. M. & Witkamp, R. F. Effects of cannabidiol chewing gum on perceived pain and well-being of irritable bowel syndrome patients: a placebo-controlled crossover exploratory intervention study with symptom-driven dosing. Cannabis Cannabinoid Res. 7, 436–444 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Van den Houte, K. et al. Prevalence and impact of self-reported irritable bowel symptoms in the general population. UEG J. 7, 307–315 (2019).

    Article 

    Google Scholar
     

  • Black, C. J. & Ford, A. C. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 17, 473–486 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Posserud, I. et al. Altered rectal perception in irritable bowel syndrome is associated with symptom severity. Gastroenterology 133, 1113–1123 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Tornblom, H. et al. Colonic transit time and IBS symptoms: what’s the link? Am. J. Gastroenterol. 107, 754–760 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Simren, M. et al. Cumulative effects of psychologic distress, visceral hypersensitivity, and abnormal transit on patient-reported outcomes in irritable bowel syndrome. Gastroenterology 157, 391–402 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Azpiroz, F. Hypersensitivity in functional gastrointestinal disorders. Gut 51, i25–i28 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Azpiroz, F. et al. Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol. Motil. 19, 62–88 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barbara, G. et al. Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome. Curr. Gastroenterol. Rep. 13, 308–315 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Malcolm, A., Phillips, S. F., Kellow, J. E. & Cousins, M. J. Direct clinical evidence for spinal hyperalgesia in a patient with irritable bowel syndrome. Am. J. Gastroenterol. 96, 2427–2431 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mertz, H. Review article: visceral hypersensitivity. Aliment. Pharmacol. Ther. 17, 623–633 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bhattarai, Y., Muniz Pedrogo, D. A. & Kashyap, P. C. Irritable bowel syndrome: a gut microbiota-related disorder? Am. J. Physiol. Gastrointest. Liver Physiol. 312, G52–G62 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shiha, M. G., Ashgar, Z., Fraser, E. M., Kurien, M. & Aziz, I. High prevalence of primary bile acid diarrhoea in patients with functional diarrhoea and irritable bowel syndrome-diarrhoea, based on Rome III and Rome IV criteria. EClinicalMedicine 25, 100465 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Halvorson, H. A., Schlett, C. D. & Riddle, M. S. Postinfectious irritable bowel syndrome–a meta-analysis. Am. J. Gastroenterol. 101, 1894–1899 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Jalanka-Tuovinen, J. et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63, 1737–1745 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Paula, H. et al. Non-enteric infections, antibiotic use, and risk of development of functional gastrointestinal disorders. Neurogastroenterol. Motil. 27, 1580–1586 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heitkemper, M., Jarrett, M., Bond, E. F. & Chang, L. Impact of sex and gender on irritable bowel syndrome. Biol. Res. Nurs. 5, 56–65 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Naliboff, B. D. et al. Sex-related differences in IBS patients: central processing of visceral stimuli. Gastroenterology 124, 1738–1747 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Hubbard, C. S. et al. Estrogen-dependent visceral hypersensitivity following stress in rats: an fMRI study. Mol. Pain 12, 1744806916654145 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang, Y., Greenwood-Van Meerveld, B., Johnson, A. C. & Travagli, R. A. Role of estrogen and stress on the brain-gut axis. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G203–G209 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mulak, A., Taché, Y. & Larauche, M. Sex hormones in the modulation of irritable bowel syndrome. World J. Gastroenterol. 20, 2433–2448 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bradford, K. et al. Association between early adverse life events and irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 10, 385–390 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Chaloner, A. & Greenwood-Van Meerveld, B. Sexually dimorphic effects of unpredictable early life adversity on visceral pain behavior in a rodent model. J. Pain 14, 270–280 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Rastelli, D. et al. Diminished androgen levels are linked to irritable bowel syndrome and cause bowel dysfunction in mice. J. Clin. Invest. 132, e150789 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blanton, H. L. et al. Sex differences and the endocannabinoid system in pain. Pharmacol. Biochem. Behav. 202, 173107 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Simren, M. & Tack, J. New treatments and therapeutic targets for IBS and other functional bowel disorders. Nat. Rev. Gastroenterol. Hepatol. 15, 589–605 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dapoigny, M., Abitbol, J. L. & Fraitag, B. Efficacy of peripheral kappa agonist fedotozine versus placebo in treatment of irritable bowel syndrome. A multicenter dose-response study. Dig. Dis. Sci. 40, 2244–2249 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delvaux, M. et al. The kappa agonist fedotozine relieves hypersensitivity to colonic distention in patients with irritable bowel syndrome. Gastroenterology 116, 38–45 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mangel, A. W. et al. Clinical trial: asimadoline in the treatment of patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 28, 239–249 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Szarka, L. A. et al. Efficacy of on-demand asimadoline, a peripheral kappa-opioid agonist, in females with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 5, 1268–1275 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delvaux, M. et al. Effect of asimadoline, a kappa opioid agonist, on pain induced by colonic distension in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 20, 237–246 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dukes, G. et al. Lack of effect of the NH3 receptor antagonist, talnetant SB223412, on symptoms of IBS: results of 2 randomized, double-blind, placebo-controlled dose-ranging trials. Gastroenterology 132, A60 (2007).


    Google Scholar
     

  • Houghton, L. A. et al. Effect of the NK(3) receptor antagonist, talnetant, on rectal sensory function and compliance in healthy humans. Neurogastroenterol. Motil. 19, 732–743 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delvaux, M. Role of visceral sensitivity in the pathophysiology of irritable bowel syndrome. Gut 51, i67–i71 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lecci, A., Altamura, M., Capriati, A. & Maggi, C. A. Tachykinin receptors and gastrointestinal motility: focus on humans. Eur. Rev. Med. Pharmacol. Sci. 12, 69–80 (2008).

    PubMed 

    Google Scholar
     

  • Tack, J. et al. The neurokinin-2 receptor antagonist ibodutant improves overall symptoms, abdominal pain and stool pattern in female patients in a phase II study of diarrhoea-predominant IBS. Gut 66, 1403–1413 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, O., Munakata, J., Naliboff, B., Chang, L. & Mayer, E. A double-blind parallel group pilot study of the effect of CJ-11,974 and placebo on perceptual and emotional responses to rectosigmoid distension in IBSs patients. Gastroenterology. 118, https://doi.org/10.1016/S0016-5085(00)85527-4 (2000).

  • Tillisch, K. et al. Neurokinin-1-receptor antagonism decreases anxiety and emotional arousal circuit response to noxious visceral distension in women with irritable bowel syndrome: a pilot study. Aliment. Pharmacol. Ther. 35, 360–367 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akyuz, F., Mimidis, K., Nikolai, H., Vos, R. & Tack, J. Influence of NK1 receptor antagonist aprepitant on rectal sensitivity and compliance in healthy volunteers. Gastroenterology 32, A684 (2007).


    Google Scholar
     

  • Zakko, S., Barton, G., Weber, E., Dunger-Baldauf, C. & Ruhl, A. Randomised clinical trial: the clinical effects of a novel neurokinin receptor antagonist, DNK333, in women with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 33, 1311–1321 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kelleher, D. et al. Randomized, double-blind, placebo (PLA)-controlled, crossover study to evaluate efficacy and safety of the beta 3-adrenergic receptor agonist solabegron (SOL) in patients with irritable bowel syndrome (IBS). Neurogastroenterol. Motil. 20, 131–132 (2008).


    Google Scholar
     

  • Drossman, D. A. et al. Randomized, double-blind, placebo-controlled trial of the 5-HT1A receptor antagonist AZD7371 tartrate monohydrate (robalzotan tartrate monohydrate) in patients with irritable bowel syndrome. Am. J. Gastroenterol. 103, 2562–2569 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith, S. C. & Wagner, M. S. Clinical endocannabinoid deficiency (CECD) revisited: can this concept explain the therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol. Lett. 35, 198–201 (2014).

    PubMed 

    Google Scholar
     

  • Chang, L. et al. Efficacy and safety of olorinab, a peripherally acting, highly selective, full agonist of the cannabinoid receptor 2, for the treatment of abdominal pain in patients with irritable bowel syndrome: results from a phase 2b randomized study. UEG J. 9 (S8), 81 (2021).


    Google Scholar
     

  • National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice. Committee on the Health Effects of Marijuana: an Evidence Review and Research Agenda. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research (National Academies Press, 2017).

  • Adejumo, A. C., Ajayi, T. O., Adegbala, O. M. & Bukong, T. N. Higher odds of irritable bowel syndrome among hospitalized patients using cannabis: a propensity-matched analysis. Eur. J. Gastroenterol. Hepatol. 31, 756–765 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Russo, E. B. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol. Lett. 25, 31–39 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Patel, R. S., Goyal, H., Satodiya, R. & Tankersley, W. E. Relationship of Cannabis use disorder and irritable bowel syndrome (IBS): an analysis of 6.8 million hospitalizations in the United States. Subst. Use Misuse 55, 281–290 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Pandey, S. et al. Endocannabinoid system in irritable bowel syndrome and cannabis as a therapy. Complement. Ther. Med. 48, 102242 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Choi, C. et al. Cannabis use is associated with reduced 30-day all-cause readmission among hospitalized patients with irritable bowel syndrome: a nationwide analysis. J. Clin. Gastroenterol. 56, 257–265 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Fichna, J. et al. Endocannabinoid and cannabinoid-like fatty acid amide levels correlate with pain-related symptoms in patients with IBS-D and IBS-C: a pilot study. PLoS ONE 8, e85073 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Esfandyari, T. et al. Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G137–G145 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klooker, T. K., Leliefeld, K. E., Van Den Wijngaard, R. M. & Boeckxstaens, G. E. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol. Motil. 23, 30–35 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osborn, L. A. et al. Self-medication of somatic and psychiatric conditions using botanical marijuana. J. Psychoact. Drugs 47, 345–350 (2015).

    Article 

    Google Scholar
     

  • Gonzalez, S., Cebeira, M. & Fernandez-Ruiz, J. Cannabinoid tolerance and dependence: a review of studies in laboratory animals. Pharmacol. Biochem. Behav. 81, 300–318 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perisetti, A. et al. Cannabis hyperemesis syndrome: an update on the pathophysiology and management. Ann. Gastroenterol. 33, 571–578 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higgins, P. et al. P418 Safety and efficacy of olorinab, a peripherally restricted, highly-selective, cannabinoid receptor 2 agonist in a phase 2A study in chronic abdominal pain associated with Crohn’s disease. J. Crohns Colitis 13, S318–S318 (2019).

    Article 

    Google Scholar
     

  • Ly, H. G. et al. Increased cerebral cannabinoid-1 receptor availability is a stable feature of functional dyspepsia: a [F]MK-9470 PET study. Psychother. Psychosom. 84, 149–158 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02875678 (2017).

  • Weltens, N., Depoortere, I., Tack, J. & Van Oudenhove, L. Effect of acute Δ9-tetrahydrocannabinol administration on subjective and metabolic hormone responses to food stimuli and food intake in healthy humans: a randomized, placebo-controlled study. Am. J. Clin. Nutr. 109, 1051–1063 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Rock, E. M., Limebeer, C. L., Pertwee, R. G., Mechoulam, R. & Parker, L. A. Therapeutic potential of cannabidiol, cannabidiolic acid, and cannabidiolic acid methyl ester as treatments for nausea and vomiting. Cannabis Cannabinoid Res. 6, 266–274 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharkey, K. A., Darmani, N. A. & Parker, L. A. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur. J. Pharmacol. 722, 134–146 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grimison, P. et al. Oral THC:CBD cannabis extract for refractory chemotherapy-induced nausea and vomiting: a randomised, placebo-controlled, phase II crossover trial. Ann. Oncol. 31, 1553–1560 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jehangir, A. & Parkman, H. P. Cannabinoid use in patients with gastroparesis and related disorders: prevalence and benefit. Am. J. Gastroenterol. 114, 945–953 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • McCarty, T. R., Chouairi, F., Hathorn, K. E., Chan, W. W. & Thompson, C. C. Trends and socioeconomic health outcomes of cannabis use among patients with gastroparesis: a United States nationwide inpatient sample analysis. J. Clin. Gastroenterol. 56, 324–330 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Tu, Q., Heitkemper, M. M., Jarrett, M. E. & Buchanan, D. T. Sleep disturbances in irritable bowel syndrome: a systematic review. Neurogastroenterol. Motil. 29, https://doi.org/10.1111/nmo.12946 (2017).

  • Simpson, N. S., Scott-Sutherland, J., Gautam, S., Sethna, N. & Haack, M. Chronic exposure to insufficient sleep alters processes of pain habituation and sensitization. Pain 159, 33–40 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith, M. T.Jr. et al. Sex differences in measures of central sensitization and pain sensitivity to experimental sleep disruption: implications for sex differences in chronic pain. Sleep 42, zsy209 (2019).

    Article 

    Google Scholar
     

  • Babson, K. A., Sottile, J. & Morabito, D. Cannabis, cannabinoids, and sleep: a review of the literature. Curr. Psychiatry Rep. 19, 23 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Méndez-Díaz, M., Ruiz-Contreras, A. E., Cortés-Morelos, J. & Prospéro-García, O. Cannabinoids and sleep/wake control. Adv. Exp. Med. Biol. 1297, 83–95 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Kaul, M., Zee, P. C. & Sahni, A. S. Effects of cannabinoids on sleep and their therapeutic potential for sleep disorders. Neurotherapeutics 18, 217–227 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mondino, A. et al. Effects of cannabis consumption on sleep. Adv. Exp. Med. Biol. 1297, 147–162 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eijsbouts, C. et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 53, 1543–1552 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grigorenko, E. et al. Assessment of cannabinoid induced gene changes: tolerance and neuroprotection. Chem. Phys. Lipids 121, 257–266 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hryhorowicz, S., Walczak, M., Zakerska-Banaszak, O., Słomski, R. & Skrzypczak-Zielińska, M. Pharmacogenetics of cannabinoids. Eur. J. Drug Metab. Pharmacokinet. 43, 1–12 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wong, B. S. et al. Randomized pharmacodynamic and pharmacogenetic trial of dronabinol effects on colon transit in irritable bowel syndrome-diarrhea. Neurogastroenterol. Motil. 24, 358–e169 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bedse, G., Hill, M. N. & Patel, S. 2-Arachidonoylglycerol modulation of anxiety and stress adaptation: from grass roots to novel therapeutics. Biol. Psychiatry 88, 520–530 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Sullivan, S. E., Yates, A. S. & Porter, R. K. The peripheral cannabinoid receptor type 1 (CB1) as a molecular target for modulating body weight in man. Molecules 26, 6178 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hossain, M. Z., Ando, H., Unno, S. & Kitagawa, J. Targeting peripherally restricted cannabinoid receptor 1, cannabinoid receptor 2, and endocannabinoid-degrading enzymes for the treatment of neuropathic pain including neuropathic orofacial pain. Int. J. Mol. Sci. 21, 1423 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alger, B. E. Endocannabinoids at the synapse a decade after the dies mirabilis (29 March 2001): what we still do not know. J. Physiol. 590, 2203–2212 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Castillo, P. E., Younts, T. J., Chavez, A. E. & Hashimotodani, Y. Endocannabinoid signaling and synaptic function. Neuron 76, 70–81 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Di Marzo, V., Blumberg, P. M. & Szallasi, A. Endovanilloid signaling in pain. Curr. Opin. Neurobiol. 12, 372–379 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Gabrielsson, L., Mattsson, S. & Fowler, C. J. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br. J. Clin. Pharmacol. 82, 932–942 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petrosino, S. & Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br. J. Pharmacol. 174, 1349–1365 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Russo, R. et al. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr. Med. Chem. 25, 3930–3952 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iannotti, F. A. & Di Marzo, V. The gut microbiome, endocannabinoids and metabolic disorders. J. Endocrinol. 248, R83–R97 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laprairie, R. B., Bagher, A. M., Kelly, M. E. & Denovan-Wright, E. M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 172, 4790–4805 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pacher, P., Kogan, N. M. & Mechoulam, R. Beyond THC and endocannabinoids. Annu. Rev. Pharmacol. Toxicol. 60, 637–659 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spanagel, R. & Bilbao, A. Approved cannabinoids for medical purposes — comparative systematic review and meta-analysis for sleep and appetite. Neuropharmacology 196, 108680 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abuhasira, R., Shbiro, L. & Landschaft, Y. Medical use of cannabis and cannabinoids containing products — regulations in Europe and North America. Eur. J. Intern. Med. 49, 2–6 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • D’Hooghe, M. et al. Sativex(R) (nabiximols) cannabinoid oromucosal spray in patients with resistant multiple sclerosis spasticity: the Belgian experience. BMC Neurol. 21, 227 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leite, C. E., Mocelin, C. A., Petersen, G. O., Leal, M. B. & Thiesen, F. V. Rimonabant: an antagonist drug of the endocannabinoid system for the treatment of obesity. Pharmacol. Rep. 61, 217–224 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brodie, M. J. et al. A phase 2 randomized controlled trial of the efficacy and safety of cannabidivarin as add-on therapy in participants with inadequately controlled focal seizures. Cannabis Cannabinoid Res. 6, 528–536 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van den Elsen, G. A. H. et al. Tetrahydrocannabinol in behavioral disturbances in dementia: a crossover randomized controlled trial. Am. J. Geriatr. Psychiatry 23, 1214–1224 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Yacyshyn, B. et al. Su1930–safety and efficacy of olorinab, a peripherally restricted, highly selective, cannabinoid receptor 2 agonist in a phase 2A study in chronic abdominal pain associated with Crohn’s disease. Gastroenterology 156, S-665 (2019).

    Article 

    Google Scholar
     

  • Bloch, M. H., Landeros-Weisenberger, A., Johnson, J. A. & Leckman, J. F. A phase-2 pilot study of a therapeutic combination of Δ9-tetrahydracannabinol and palmitoylethanolamide for adults with Tourette’s syndrome. J. Neuropsychiatry Clin. Neurosci. 33, 328–336 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Light, K. & Karboune, S. Emulsion, hydrogel and emulgel systems and novel applications in cannabinoid delivery: a review. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2021.1926903 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liktor-Busa, E., Keresztes, A., LaVigne, J., Streicher, J. M. & Largent-Milnes, T. M. Analgesic potential of terpenes derived from Cannabis sativa. Pharmacol. Rev. 73, 98–126 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park, C., Zuo, J., Somayaji, V., Lee, B. J. & Lobenberg, R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int. J. Pharm. 604, 120766 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link

    EHS
    Back to top button