EHS
EHS

Polyp segmentation with consistency training and continuous update of pseudo-label


  • Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691 (2017).

    Article 

    Google Scholar
     

  • Pacal, I., Karaboga, D., Basturk, A., Akay, B. & Nalbantoglu, U. A comprehensive review of deep learning in colon cancer. Comput. Biol. Med. 126, 104003 (2020).

    Article 

    Google Scholar
     

  • Poudel, S., Kim, Y. J., Vo, D. M. & Lee, S.-W. Colorectal disease classification using efficiently scaled dilation in convolutional neural network. IEEE Access 8, 99227–99238 (2020).

    Article 

    Google Scholar
     

  • Poudel, S. & Lee, S.-W. Deep multi-scale attentional features for medical image segmentation. Appl. Soft Comput. 109, 107445 (2021).

    Article 

    Google Scholar
     

  • Pacal, I. et al. An efficient real-time colonic polyp detection with yolo algorithms trained by using negative samples and large datasets. Comput. Biol. Med. 141, 105031 (2022).

    Article 

    Google Scholar
     

  • Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3431–3440 (2015).

  • Qadir, H. A., Solhusvik, J., Bergsland, J., Aabakken, L. & Balasingham, I. A framework with a fully convolutional neural network for semi-automatic colon polyp annotation. IEEE Access 7, 169537–169547 (2019).

    Article 

    Google Scholar
     

  • Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241 (Springer, 2015).

  • Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N. & Liang, J. Unet++: A nested u-net architecture for medical image segmentation. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 3–11 (Springer, 2018).

  • Jha, D. et al. ResUNet++: An advanced architecture for medical image segmentation. in Proceedings of the International Symposium on Multimedia. 225–230 (2019).

  • Safarov, S. & Whangbo, T. K. A-denseunet: Adaptive densely connected unet for polyp segmentation in colonoscopy images with atrous convolution. Sensors 21, 1441 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Borgli, H. et al. Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7, 1–14 (2020).

    Article 

    Google Scholar
     

  • Lee, D.-H. et al. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. Workshop on challenges in representation learning ICML 3, 896 (2013).


    Google Scholar
     

  • Berthelot, D. et al. Mixmatch: A holistic approach to semi-supervised learning. Adv. Neural Inf. Process. Syst. 32 (2019).

  • Berthelot, D. et al. Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring. arXiv preprint arXiv:1911.09785 (2019).

  • Rasmus, A., Valpola, H., Honkala, M., Berglund, M. & Raiko, T. Semi-supervised learning with ladder networks. arXiv preprint arXiv:1507.02672 (2015).

  • Laine, S. & Aila, T. Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016).

  • Tarvainen, A. & Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780 (2017).

  • Grandvalet, Y., Bengio, Y. et al. Semi-supervised learning by entropy minimization. in CAP. 281–296 (2005).

  • Qiao, S., Shen, W., Zhang, Z., Wang, B. & Yuille, A. Deep co-training for semi-supervised image recognition. in Proceedings of the European Conference on Computer Vision (ECCV). 135–152 (2018).

  • Li, W. et al. Semi-supervised learning based on generative adversarial network: A comparison between good gan and bad gan approach. in CVPR Workshops (2019).

  • Souly, N., Spampinato, C. & Shah, M. Semi supervised semantic segmentation using generative adversarial network. in Proceedings of the IEEE International Conference on Computer Vision. 5688–5696 (2017).

  • Baheti, B., Innani, S., Gajre, S. & Talbar, S. Eff-unet: A novel architecture for semantic segmentation in unstructured environment. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 358–359 (2020).

  • Gu, Z. et al. Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38, 2281–2292 (2019).

    Article 

    Google Scholar
     

  • Li, Z., Pan, J., Wu, H., Wen, Z. & Qin, J. Memory-efficient automatic kidney and tumor segmentation based on non-local context guided 3D u-net. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 197–206 (Springer, 2020).

  • Wang, W., Zhong, J., Wu, H., Wen, Z. & Qin, J. Rvseg-net: An efficient feature pyramid cascade network for retinal vessel segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 796–805 (Springer, 2020).

  • Zhong, J., Wang, W., Wu, H., Wen, Z. & Qin, J. Polypseg: An efficient context-aware network for polyp segmentation from colonoscopy videos. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 285–294 (Springer, 2020).

  • Fan, D.-P. et al. Pranet: Parallel reverse attention network for polyp segmentation. arXiv preprint arXiv:2006.11392 (2020).

  • Huang, C.-H., Wu, H.-Y. & Lin, Y.-L. Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint arXiv:2101.07172 (2021).

  • Chao, P., Kao, C.-Y., Ruan, Y.-S., Huang, C.-H. & Lin, Y.-L. Hardnet: A low memory traffic network. in Proceedings of the IEEE/CVF International Conference on Computer Vision. 3552–3561 (2019).

  • Masood, A., Al-Jumaily, A. & Anam, K. Self-supervised learning model for skin cancer diagnosis. in 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). 1012–1015 (IEEE, 2015).

  • Gu, L. et al. Semi-supervised learning for biomedical image segmentation via forest oriented super pixels (voxels). in International Conference on Medical Image Computing and Computer-Assisted Intervention. 702–710 (Springer, 2017).

  • Jaisakthi, S., Chandrabose, A. & Mirunalini, P. Automatic skin lesion segmentation using semi-supervised learning technique. arXiv preprint arXiv:1703.04301 (2017).

  • Bai, W. et al. Semi-supervised learning for network-based cardiac mr image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 253–260 (Springer, 2017).

  • Hung, W. C., Tsai, Y. H., Liou, Y. T., Lin, Y. Y. & Yang, M. H. Adversarial learning for semi-supervised semantic segmentation. in 29th British Machine Vision Conference, BMVC 2018 (2019).

  • Zhang, Y. et al. Deep adversarial networks for biomedical image segmentation utilizing unannotated images. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 408–416 (Springer, 2017).

  • Nie, D., Gao, Y., Wang, L. & Shen, D. Asdnet: attention based semi-supervised deep networks for medical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 370–378 (Springer, 2018).

  • Hou, J., Ding, X. & Deng, J. D. Semi-supervised semantic segmentation of vessel images using leaking perturbations. in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2625–2634 (2022).

  • Athiwaratkun, B., Finzi, M., Izmailov, P. & Wilson, A. G. There are many consistent explanations of unlabeled data: Why you should average. arXiv preprint arXiv:1806.05594 (2018).

  • Cui, W. et al. Semi-supervised brain lesion segmentation with an adapted mean teacher model. in International Conference on Information Processing in Medical Imaging. 554–565 (Springer, 2019).

  • Luo, X., Chen, J., Song, T. & Wang, G. Semi-supervised medical image segmentation through dual-task consistency. arXiv preprint arXiv:2009.04448 (2020).

  • Zhang, Y., Zhou, B., Chen, L., Wu, Y. & Zhou, H. Multi-transformation consistency regularization for semi-supervised medical image segmentation. in 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD). 485–489 (IEEE, 2021).

  • Zhou, H.-Y. et al. Ssmd: Semi-supervised medical image detection with adaptive consistency and heterogeneous perturbation. Med. Image Anal. 72, 102117 (2021).

    Article 

    Google Scholar
     

  • Jha, D. et al. Kvasir-seg: A segmented polyp dataset. in International Conference on Multimedia Modeling. 451–462 (Springer, 2020).

  • Li, X. et al. Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Transactions on Neural Networks and Learning Systems (2020).

  • Sajjadi, M., Javanmardi, M. & Tasdizen, T. Regularization with stochastic transformations and perturbations for deep semi-supervised learning. arXiv preprint arXiv:1606.04586 (2016).

  • Tan, M. & Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019).

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4510–4520 (2018).

  • Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7132–7141 (2018).

  • Chen, L. et al. Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5659–5667 (2017).

  • Bernal, J. et al. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015).



  • Source link

    EHS
    Back to top button