EHS
EHS

Impact of intravenous dexmedetomidine on gastrointestinal function recovery after laparoscopic hysteromyomectomy: a randomized clinical trial


  • van Bree, S. H. et al. New therapeutic strategies for postoperative ileus. Nat. Rev. Gastroenterol. Hepatol. 9, 675–683. https://doi.org/10.1038/nrgastro.2012.134 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Payne, S. C., Furness, J. B. & Stebbing, M. J. Bioelectric neuromodulation for gastrointestinal disorders: Effectiveness and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 16, 89–105. https://doi.org/10.1038/s41575-018-0078-6 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Boeckxstaens, G. E. & de Jonge, W. J. Neuroimmune mechanisms in postoperative ileus. Gut 58, 1300–1311. https://doi.org/10.1136/gut.2008.169250 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Rami Reddy, S. R. & Cappell, M. S. A systematic review of the clinical presentation, diagnosis, and treatment of small bowel obstruction. Curr. Gastroenterol. Rep. 19, 28. https://doi.org/10.1007/s11894-017-0566-9 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hoshino, N. et al. Daikenchuto for reducing postoperative ileus in patients undergoing elective abdominal surgery. Cochrane Database Syst. Rev. 4, CD012271. https://doi.org/10.1002/14651858.CD012271.pub2 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • BhaveChittawar, P., Franik, S., Pouwer, A. W. & Farquhar, C. Minimally invasive surgical techniques versus open myomectomy for uterine fibroids. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004638.pub3 (2014).

    Article 

    Google Scholar
     

  • Li, Z. L. et al. Incidence and risk factors of postoperative ileus after hysterectomy for benign indications. Int. J. Colorectal. Dis. 35, 2105–2112. https://doi.org/10.1007/s00384-020-03698-5 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sheyn, D. et al. Incidence and risk factors of early postoperative small bowel obstruction in patients undergoing hysterectomy for benign indications. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2018.11.1095 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takimoto, A. et al. Postoperative intestinal obstruction in patients with biliary atresia impedes biliary excretion and results in subsequent liver transplantation. Pediatr. Surg. Int. 37, 229–234. https://doi.org/10.1007/s00383-020-04807-9 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, J. et al. Efficacy and safety of Seprafilm for preventing intestinal obstruction after gastrointestinal neoplasms surgery: A systematic review and meta-analysis. Acta. Chir. Belg. 121, 1–15. https://doi.org/10.1080/00015458.2020.1871286 (2021).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • Vilz, T. O., Stoffels, B., Strassburg, C., Schild, H. H. & Kalff, J. C. Ileus in adults. Dtsch. Arztebl. Int. 114, 508–518. https://doi.org/10.3238/arztebl.2017.0508 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Stakenborg, N. et al. Preoperative administration of the 5-HT4 receptor agonist prucalopride reduces intestinal inflammation and shortens postoperative ileus via cholinergic enteric neurons. Gut 68, 1406–1416. https://doi.org/10.1136/gutjnl-2018-317263 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • De Cassai, A. et al. Effect of dexmedetomidine on hemodynamic responses to tracheal intubation: A meta-analysis with meta-regression and trial sequential analysis. J. Clin. Anesth. 72, 110287. https://doi.org/10.1016/j.jclinane.2021.110287 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y., Zeng, L. & Zhao, S. Ligands of adrenergic receptors: A structural point of view. Biomolecules 11, 936. https://doi.org/10.3390/biom11070936 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368. https://doi.org/10.1002/cphy.c130055 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera, B. K., Misra, S., Jena, S. S. & Mohanty, C. R. The effect of perioperative dexmedetomidine on postoperative bowel function recovery in adult patients receiving general anesthesia. Minerva Anestesiol. 88, 51–61. https://doi.org/10.23736/S0375-9393.21.15773-6 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, S. Q. et al. Effects of intravenous lidocaine, dexmedetomidine and their combination on postoperative pain and bowel function recovery after abdominal hysterectomy. Minerva Anestesiol. 83, 685–694. https://doi.org/10.23736/S0375-9393.16.11472-5 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Effect of dexmedetomidine alone for intravenous patient-controlled analgesia after gynecological laparoscopic surgery: A consort-prospective, randomized, controlled trial. Medicine (Baltimore) 95, e3639. https://doi.org/10.1097/MD.0000000000003639 (2016).

    Article 

    Google Scholar
     

  • Kimel, M., Zeidler, C., Kwon, P., Revicki, D. & Stander, S. Validation of psychometric properties of the itch numeric rating scale for pruritus associated with Prurigo Nodularis: A secondary analysis of a randomized clinical trial. JAMA Dermatol. 156, 1354–1358. https://doi.org/10.1001/jamadermatol.2020.3071 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Celio, A., Bayouth, L., Burruss, M. B. & Spaniolas, K. Prospective assessment of postoperative nausea early after bariatric surgery. Obes. Surg. 29, 858–861. https://doi.org/10.1007/s11695-018-3605-1 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kiski, D., Malec, E. & Schmidt, C. Use of dexmedetomidine in pediatric cardiac anesthesia. Curr. Opin. Anaesthesiol. 32, 334–342. https://doi.org/10.1097/ACO.0000000000000731 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bragg, D., El-Sharkawy, A. M., Psaltis, E., Maxwell-Armstrong, C. A. & Lobo, D. N. Postoperative ileus: Recent developments in pathophysiology and management. Clin. Nutr. 34, 367–376. https://doi.org/10.1016/j.clnu.2015.01.016 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, N. N. et al. Electroacupuncture ameliorates intestinal inflammation by activating alpha7nAChR-mediated JAK2/STAT3 signaling pathway in postoperative ileus. Theranostics 11, 4078–4089. https://doi.org/10.7150/thno.52574 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engel, D. R. et al. T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat. Med. 16, 1407–1413. https://doi.org/10.1038/nm.2255 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218. https://doi.org/10.18632/oncotarget.23208 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, F. A., Rodrigues, B. L., Ayrizono, M. L. & Leal, R. F. The immunological basis of inflammatory bowel disease. Gastroenterol. Res. Pract. 2016, 2097274. https://doi.org/10.1155/2016/2097274 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stakenborg, N., Viola, M. F. & Boeckxstaens, G. E. Intestinal neuro-immune interactions: Focus on macrophages, mast cells and innate lymphoid cells. Curr. Opin. Neurobiol. 62, 68–75. https://doi.org/10.1016/j.conb.2019.11.020 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuki, K. The immunomodulatory mechanism of dexmedetomidine. Int. Immunopharmacol. 97, 107709. https://doi.org/10.1016/j.intimp.2021.107709 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Winter, B. Y., van den Wijngaard, R. M. & de Jonge, W. J. Intestinal mast cells in gut inflammation and motility disturbances. Biochim. Biophys. Acta. 1822, 66. https://doi.org/10.1016/j.bbadis.2011.03.016 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Holte, K. & Kehlet, H. Postoperative ileus: A preventable event. Br. J. Surg. 87, 1480–1493. https://doi.org/10.1046/j.1365-2168.2000.01595.x (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y., Xie, Y., Xue, Y., Wang, B. & Jin, X. Effects of ultrasound-guided stellate ganglion block on autonomic nervous function during CO2-pneumoperitoneum: A randomized double-blind control trial. J. Clin. Anesth. 32, 255–261. https://doi.org/10.1016/j.jclinane.2016.03.019 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bonaz, B., Sinniger, V. & Pellissier, S. The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Front. Immunol. 8, 1452. https://doi.org/10.3389/fimmu.2017.01452 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venara, A. et al. Postoperative ileus: Pathophysiology, incidence, and prevention. J. Visc. Surg. 153, 439–446. https://doi.org/10.1016/j.jviscsurg.2016.08.010 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cioccari, L. et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: A subgroup analysis of the sedation practice in intensive care evaluation [SPICE III] trial. Crit. Care 24, 441. https://doi.org/10.1186/s13054-020-03115-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontak, A. C., Victor, R. G. & Vongpatanasin, W. Dexmedetomidine as a novel countermeasure for cocaine-induced central sympathoexcitation in cocaine-addicted humans. Hypertension 61, 388–394. https://doi.org/10.1161/HYPERTENSIONAHA.112.203554 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, D. et al. Activation of the alpha2B adrenoceptor by the sedative sympatholytic dexmedetomidine. Nat. Chem. Biol. 16, 507–512. https://doi.org/10.1038/s41589-020-0492-2 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z., Li, W. & Jia, H. Postoperative effects of dexmedetomidine on serum inflammatory factors and cognitive malfunctioning in patients with general anesthesia. J. Healthc. Eng. 2021, 7161901. https://doi.org/10.1155/2021/7161901 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inada, T. et al. Mitigation of inflammation using the intravenous anesthetic dexmedetomidine in the mouse air pouch model. Immunopharmacol. Immunotoxicol. 39, 225–232. https://doi.org/10.1080/08923973.2017.1327964 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Nicholls, A. J., Wen, S. W., Hall, P., Hickey, M. J. & Wong, C. H. Y. Activation of the sympathetic nervous system modulates neutrophil function. J. Leukoc. Biol. 103, 295–309. https://doi.org/10.1002/JLB.3MA0517-194RR (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Li, B. et al. Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: A meta-analysis. Sci. Rep. 5, 12342. https://doi.org/10.1038/srep12342 (2015).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, H., Hu, B., Li, Z. & Li, J. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 37, 1763–1770. https://doi.org/10.1007/s10753-014-9906-1 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hernandez, G. et al. Effects of dexmedetomidine and esmolol on systemic hemodynamics and exogenous lactate clearance in early experimental septic shock. Crit. Care 20, 234. https://doi.org/10.1186/s13054-016-1419-x (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Victoni, T. et al. Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Med. Microbiol. Immunol. 199, 35–42. https://doi.org/10.1007/s00430-009-0134-5 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Yeh, Y. C. et al. Dexmedetomidine prevents alterations of intestinal microcirculation that are induced by surgical stress and pain in a novel rat model. Anesth. Analg. 115, 46–53. https://doi.org/10.1213/ANE.0b013e318253631c (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Effect of intraoperative dexmedetomidine on recovery of gastrointestinal function after abdominal surgery in older adults: A randomized clinical trial. JAMA Netw. Open 4, e2128886. https://doi.org/10.1001/jamanetworkopen.2021.28886 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Dexmedetomidine improves gastrointestinal motility after laparoscopic resection of colorectal cancer: A randomized clinical trial. Medicine (Baltimore) 95, e4295. https://doi.org/10.1097/MD.0000000000004295 (2016).

    Article 

    Google Scholar
     

  • Huang, S. S. et al. Impact of intravenous dexmedetomidine on postoperative bowel movement recovery after laparoscopic nephrectomy: A consort-prospective, randomized, controlled trial. World J. Clin. Cases 9, 7762–7771. https://doi.org/10.12998/wjcc.v9.i26.7762 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M., Wang, T., Xiao, W., Zhao, L. & Yao, D. Low-dose dexmedetomidine accelerates gastrointestinal function recovery in patients undergoing lumbar spinal fusion. Front Pharmacol. 10, 1509. https://doi.org/10.3389/fphar.2019.01509 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iirola, T. et al. Dexmedetomidine inhibits gastric emptying and oro-caecal transit in healthy volunteers. Br. J. Anaesth. 106, 522–527. https://doi.org/10.1093/bja/aer004 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Inhibitory effects of dexmedetomidine and propofol on gastrointestinal tract motility involving impaired enteric glia Ca(2+) response in mice. Neurochem. Res. 46, 1410–1422. https://doi.org/10.1007/s11064-021-03280-7 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, H. et al. Effect of sedation with dexmedetomidine or propofol on gastrointestinal motility in lipopolysaccharide-induced endotoxemic mice. BMC Anesthesiol. 20, 227. https://doi.org/10.1186/s12871-020-01146-z (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer, H. D., Detriche, O. & Forget, P. Opioid-related side effects: Postoperative ileus, urinary retention, nausea and vomiting, and shivering. A review of the literature. Best Pract. Res. Clin. Anaesthesiol. 31, 499–504. https://doi.org/10.1016/j.bpa.2017.07.002 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Michelsen, L. G. & Hug, C. C. Jr. The pharmacokinetics of remifentanil. J. Clin. Anesth. 8, 679–682. https://doi.org/10.1016/s0952-8180(96)00179-1 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Park, S. C. et al. Risk factors for postoperative ileus after oblique lateral interbody fusion: A multivariate analysis. Spine J. 21, 438–445. https://doi.org/10.1016/j.spinee.2020.10.002 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Grape, S., Kirkham, K. R., Frauenknecht, J. & Albrecht, E. Intra-operative analgesia with remifentanil vs. dexmedetomidine: A systematic review and meta-analysis with trial sequential analysis. Anaesthesia 74, 793–800. https://doi.org/10.1111/anae.14657 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jebaraj, B. et al. Feasibility of dexmedetomidine as sole analgesic agent during robotic urological surgery: A pilot study. J. Anaesthesiol. Clin. Pharmacol. 33, 187–192. https://doi.org/10.4103/0970-9185.209753 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamie, K. et al. Peripherally acting mu-opioid receptor antagonists in the management of postoperative ileus: A clinical review. J. Gastrointest. Surg. 25, 293–302. https://doi.org/10.1007/s11605-020-04671-x (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, C. T. et al. Alvimopan accelerates gastrointestinal recovery after radical cystectomy: A multicenter randomized placebo-controlled trial. Eur. Urol. 66, 265–272. https://doi.org/10.1016/j.eururo.2014.02.036 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Abad-Gurumeta, A. & Gomez-Rios, M. A. Dexmedetomidine and postoperative ileus. When sparing opioids is the key. Minerva Anestesiol. https://doi.org/10.23736/S0375-9393.21.16172-3 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chabot-Dore, A. J., Schuster, D. J., Stone, L. S. & Wilcox, G. L. Analgesic synergy between opioid and alpha2-adrenoceptors. Br. J. Pharmacol. 172, 388–402. https://doi.org/10.1111/bph.12695 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gustafsson, U. O. et al. Guidelines for perioperative care in elective colorectal surgery: Enhanced recovery after surgery (ERAS) society recommendations: 2018. World J. Surg. 43, 659–695. https://doi.org/10.1007/s00268-018-4844-y (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, S. S. et al. Remifentanil ameliorates intestinal ischemia-reperfusion injury. BMC Gastroenterol. 13, 69. https://doi.org/10.1186/1471-230X-13-69 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, J. T. et al. Remifentanil preconditioning protects the small intestine against ischemia/reperfusion injury via intestinal delta- and mu-opioid receptors. Surgery 159, 548–559. https://doi.org/10.1016/j.surg.2015.07.028 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sayan-Ozacmak, H., Ozacmak, V. H., Turan, I., Barut, F. & Hanci, V. Pretreatment with remifentanil protects against the reduced-intestinal contractility related to the ischemia and reperfusion injury in rat. Braz. J. Anesthesiol. 65, 483–490. https://doi.org/10.1016/j.bjane.2013.09.007 (2015).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    EHS
    Back to top button