EHS
EHS

AT2 activation does not influence brain damage in the early phase after experimental traumatic brain injury in male mice


  • Langlois, J. A., Rutland-Brown, W. & Wald, M. M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabil. 21, 375–378 (2006).

    Article 

    Google Scholar
     

  • Morganti-Kossmann, M. C., Rancan, M., Otto, V. I., Stahel, P. F. & Kossmann, T. Role of cerebral inflammation after traumatic brain injury: A revisited concept. Shock 16, 165–177 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Saavedra, J. M. Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol. Neurobiol. 25, 485–512 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Saavedra, J. M. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: A beneficial effect for the treatment of brain disorders. Cell. Mol. Neurobiol. 32, 667–681. https://doi.org/10.1007/s10571-011-9754-6 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Timaru-Kast, R. et al. Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma*. Crit. Care Med. 40, 935–944. https://doi.org/10.1097/CCM.0b013e31822f08b9 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Villapol, S., Balarezo, M. G., Affram, K., Saavedra, J. M. & Symes, A. J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain J. Neurol. https://doi.org/10.1093/brain/awv172 (2015).

    Article 

    Google Scholar
     

  • Timaru-Kast, R. et al. Angiotensin II receptor 1 blockage limits brain damage and improves functional outcome after brain injury in aged animals despite age-dependent reduction in AT1 expression. Front. Aging Neurosci. 11, 18. https://doi.org/10.3389/fnagi.2019.00063 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Loane, D. J. & Faden, A. I. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol. Sci. 31, 596–604. https://doi.org/10.1016/j.tips.2010.09.005 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumners, C. et al. Protective arms of the renin-angiotensin-system in neurological disease. Clin. Exp. Pharmacol. Physiol. 40, 580–588. https://doi.org/10.1111/1440-1681.12137 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Namsolleck, P. et al. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression. Neurobiol. Dis. 51, 177–191. https://doi.org/10.1016/j.nbd.2012.11.008 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bottari, S. P., de Gasparo, M., Steckelings, U. M. & Levens, N. R. Angiotensin II receptor subtypes: Characterization, signalling mechanisms, and possible physiological implications. Front. Neuroendocrinol. 14, 123–171. https://doi.org/10.1006/frne.1993.1005 (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wruck, C. J. et al. Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler. Thromb. Vasc. Biol. 25, 57–64. https://doi.org/10.1161/01.ATV.0000150662.51436.14 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Laflamme, L., Gasparo, M., Gallo, J. M., Payet, M. D. & Gallo-Payet, N. Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108–15 cells. Effect counteracted by the AT1 receptors.J. boil. chem. 271, 22729–22735 (1996).

  • Gendron, L., Payet, M. D. & Gallo-Payet, N. The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: From observations to mechanisms. J. Mol. Endocrinol. 31, 359–372 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Reinecke, K. et al. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: Role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J. Off. Publ. Federation Am. Soc. Exp. Biol. 17, 2094–2096. https://doi.org/10.1096/fj.02-1193fje (2003).

    CAS 
    Article 

    Google Scholar
     

  • Gendron, L., Oligny, J. F., Payet, M. D. & Gallo-Payet, N. Cyclic AMP-independent involvement of Rap1/B-Raf in the angiotensin II AT2 receptor signaling pathway in NG108-15 cells. J. Biol. Chem. 278, 3606–3614. https://doi.org/10.1074/jbc.M202446200 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J. 19, 617–619 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Horiuchi, M., Akishita, M. & Dzau, V. J. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33, 613–621 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Saavedra, J. M., Benicky, J. & Zhou, J. Mechanisms of the anti-ischemic effect of angiotensin II AT(1) receptor antagonists in the brain. Cell Mol. Neurobiol. 26, 1099–1111 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Iwai, M. et al. Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110, 843–848 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Porrello, E. R., Delbridge, L. M. & Thomas, W. G. The angiotensin II type 2 (AT2) receptor: An enigmatic seven transmembrane receptor. Front Biosci. (Landmark Ed) 14, 958–972 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Plouffe, B., Guimond, M. O., Beaudry, H. & Gallo-Payet, N. Role of tyrosine kinase receptors in angiotensin II AT2 receptor signaling: Involvement in neurite outgrowth and in p42/p44mapk activation in NG108-15 cells. Endocrinology 147, 4646–4654. https://doi.org/10.1210/en.2005-1315 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hashikawa-Hobara, N. et al. Candesartan cilexetil improves angiotensin II type 2 receptor-mediated neurite outgrowth via the PI3K-Akt pathway in fructose-induced insulin-resistant rats. Diabetes 61, 925–932. https://doi.org/10.2337/db11-1468 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umschweif, G. et al. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics J. Am. Soc. Exp. NeuroTherapeutics 11, 665–678. https://doi.org/10.1007/s13311-014-0286-x (2014).

    CAS 
    Article 

    Google Scholar
     

  • Schwengel, K. et al. Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice. J. Mol. Med. (Berl.) 94, 957–966. https://doi.org/10.1007/s00109-016-1406-3 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Bennion, D. M., Steckelings, U. M. & Sumners, C. Neuroprotection via AT2 receptor agonists in ischemic stroke. Clin. Sci. (Lond.) 132, 1055–1067. https://doi.org/10.1042/CS20171549 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Griemert, E. V. et al. Plasminogen activator inhibitor-1 augments damage by impairing fibrinolysis after traumatic brain injury. Ann. Neurol. 85, 667–680. https://doi.org/10.1002/ana.25458 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thal, S. C. & Plesnila, N. Non-invasive intraoperative monitoring of blood pressure and arterial pCO(2) during surgical anesthesia in mice. J.Neurosci.Methods 159, 261–267 (2007).

  • Tsenter, J. et al. Dynamic changes in the recovery after traumatic brain injury in mice: Effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J. Neurotrauma 25, 324–333 (2008).

    Article 

    Google Scholar
     

  • Thal, S. C. et al. Inhibition of proteasomal glucocorticoid receptor degradation restores dexamethasone-mediated stabilization of the blood-brain barrier after traumatic brain injury. Crit. Care Med. 41, 1305–1315. https://doi.org/10.1097/CCM.0b013e31827ca494 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Donat, C. K., Scott, G., Gentleman, S. M. & Sastre, M. Microglial activation in traumatic brain injury. Front Aging Neurosci. 9, 208. https://doi.org/10.3389/fnagi.2017.00208 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luh, C. et al. Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury. J. Neurochem. 112, 1015–1025. https://doi.org/10.1111/j.1471-4159.2009.06514.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Timaru-Kast, R. et al. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS ONE 7, e43829. https://doi.org/10.1371/journal.pone.0043829 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timaru-Kast, R., Herbig, E. L., Luh, C., Engelhard, K. & Thal, S. C. Influence of age on cerebral housekeeping gene expression for normalization of quantitative PCR after acute brain injury in mice. J. Neurotrauma https://doi.org/10.1089/neu.2014.3784 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Faul, F., Erdfelder, E., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149-1160, doi:https://doi.org/10.3758/BRM.41.4.1149 (2009)

  • Timaru-Kast, R. et al. Angiotensin II receptor 1 blockage limits brain damage and improves functional outcome after brain injury in aged animals despite age-dependent reduction in AT1 expression. Front Aging Neurosci. 11, 63. https://doi.org/10.3389/fnagi.2019.00063 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villapol, S. et al. Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacol. Off. Publ. Am. College Neuropsychopharmacol. 37, 2817–2829. https://doi.org/10.1038/npp.2012.152 (2012).

    CAS 
    Article 

    Google Scholar
     

  • McCarthy, C. A. et al. Angiotensin II type 2 receptor stimulation initiated after stroke causes neuroprotection in conscious rats. Hypertension 60, 1531–1537. https://doi.org/10.1161/HYPERTENSIONAHA.112.199646 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Werner, C. & Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 99, 4–9. https://doi.org/10.1093/bja/aem131 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Marklund, N. Rodent models of traumatic brain injury: Methods and challenges. Methods Mol. Biol. 1462, 29–46. https://doi.org/10.1007/978-1-4939-3816-2_3 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cernak, I. Animal models of head trauma. NeuroRx 2, 410–422. https://doi.org/10.1602/neurorx.2.3.410 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umschweif, G. et al. Neuroprotection after traumatic brain injury in heat-acclimated mice involves induced neurogenesis and activation of angiotensin receptor type 2 signaling. J. Cereb. Blood flow Metabolism Off. J. Int. Soc. Cereb. Blood Flow Metabolism 34, 1381–1390. https://doi.org/10.1038/jcbfm.2014.93 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Flierl, M. A. et al. Mouse closed head injury model induced by a weight-drop device. Nat. Protoc. 4, 1328–1337. https://doi.org/10.1038/nprot.2009.148 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y., Constantini, S., Trembovler, V., Weinstock, M. & Shohami, E. An experimental model of closed head injury in mice: Pathophysiology, histopathology, and cognitive deficits. J. Neurotrauma 13, 557–568. https://doi.org/10.1089/neu.1996.13.557 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Berkner, J., Mannix, R. & Qiu, J. Clinical traumatic brain injury in the preclinical setting. Methods Mol. Biol. 1462, 11–28. https://doi.org/10.1007/978-1-4939-3816-2_2 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cernak, I., Stoica, B., Byrnes, K. R., Di, G. S. & Faden, A. I. Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4, 1286–1293 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Smith, D. H. et al. A model of parasagittal controlled cortical impact in the mouse: Cognitive and histopathologic effects. J. Neurotrauma 12, 169–178. https://doi.org/10.1089/neu.1995.12.169 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Faden, A. I. et al. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J. Cereb. Blood flow Metabolism Off. J. Int. Soc. Cereb. Blood Flow Metabolism 23, 355–363. https://doi.org/10.1097/01.WCB.0000046144.31247.33 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Y. & Swanson, R. A. Astrocytes and brain injury. J. Cereb. Blood flow Metabolism Off. J. Int. Soc. Cereb. Blood Flow Metabolism 23, 137–149. https://doi.org/10.1097/01.WCB.0000044631.80210.3C (2003).

    Article 

    Google Scholar
     

  • Fitch, M. T., Doller, C., Combs, C. K., Landreth, G. E. & Silver, J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. Off. J. Soc. Neurosci. 19, 8182–8198 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Kramer, T. J. et al. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-gamma gene expression in acute experimental traumatic brain injury. J. Neuroinflammation 16, 163. https://doi.org/10.1186/s12974-019-1550-0 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramer, T. J. et al. Correction to: Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-gamma gene expression in acute experimental traumatic brain injury. J. Neuroinflammation 16, 176. https://doi.org/10.1186/s12974-019-1577-2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menzel, L. et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65, 278–292. https://doi.org/10.1002/glia.23091 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Steckelings, U. M. et al. The past, present and future of angiotensin II type 2 receptor stimulation. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 11, 67–73, https://doi.org/10.1177/1470320309347791 (2010).

  • Steckelings, U. M. et al. Non-peptide AT2-receptor agonists. Curr. Opin. Pharmacol. 11, 187–192. https://doi.org/10.1016/j.coph.2010.11.002 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wan, Y. et al. Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J. Med. Chem. 47, 5995–6008. https://doi.org/10.1021/jm049715t (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Namsolleck, P., Recarti, C., Foulquier, S., Steckelings, U. M. & Unger, T. AT(2) receptor and tissue injury: Therapeutic implications. Curr. Hypertens. Rep. 16, 416. https://doi.org/10.1007/s11906-013-0416-6 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaschina, E. et al. Angiotensin II type 2 receptor stimulation: A novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction?. Circulation 118, 2523–2532. https://doi.org/10.1161/CIRCULATIONAHA.108.784868 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Alhusban, A. et al. Compound 21 is pro-angiogenic in the brain and results in sustained recovery after ischemic stroke. J. Hypertens. 33, 170–180. https://doi.org/10.1097/HJH.0000000000000364 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shraim, N. et al. Microbore liquid chromatography with UV detection to study the in vivo passage of compound 21, a non-peptidergic AT(2) receptor agonist, to the striatum in rats. J. Neurosci. Meth. 202, 137–142. https://doi.org/10.1016/j.jneumeth.2011.06.009 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Bennion, D. M. et al. Protective effects of the angiotensin II AT2 receptor agonist compound 21 in ischemic stroke: A nose-to-brain delivery approach. Clin. Sci. (Lond.) 132, 581–593. https://doi.org/10.1042/CS20180100 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Moisan, A. et al. Microvascular plasticity after experimental stroke: A molecular and MRI study. Cerebrovasc Dis 38, 344–353. https://doi.org/10.1159/000368597 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Baskaya, M. K., Rao, A. M., Dogan, A., Donaldson, D. & Dempsey, R. J. The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci. Lett. 226, 33–36. https://doi.org/10.1016/s0304-3940(97)00239-5 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Baldwin, B. A. & Sukhchai, S. Intracerebroventricular injection of CCK reduces operant sugar intake in pigs. Physiol. Behav. 60, 231–233. https://doi.org/10.1016/0031-9384(95)02211-2 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tomkins, O. et al. Blood-brain barrier disruption in post-traumatic epilepsy. J. Neurol. Neurosurg. Psychiatry 79, 774–777. https://doi.org/10.1136/jnnp.2007.126425 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ismael, S. & Ishrat, T. Compound 21, a direct AT2R agonist, induces IL-10 and inhibits inflammation in mice following traumatic brain injury. Neuromolecular Med. https://doi.org/10.1007/s12017-021-08687-7 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. et al. Neuroprotective effect of an angiotensin receptor type 2 agonist following cerebral ischemia in vitro and in vivo. Exp. Transl. Stroke Med. 4, 16. https://doi.org/10.1186/2040-7378-4-16 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosnyak, S. et al. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin. Sci. (Lond.) 121, 297–303. https://doi.org/10.1042/CS20110036 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Bosnyak, S. et al. Stimulation of angiotensin AT2 receptors by the non-peptide agonist, compound 21, evokes vasodepressor effects in conscious spontaneously hypertensive rats. Br. J. Pharmacol. 159, 709–716. https://doi.org/10.1111/j.1476-5381.2009.00575.x (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilliard, L. M., Mirabito, K. M. & Denton, K. M. Unmasking the potential of the angiotensin AT2 receptor as a therapeutic target in hypertension in men and women: What we know and what we still need to find out. Clin. Exp. Pharmacol. Physiol. 40, 542–550. https://doi.org/10.1111/1440-1681.12067 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ruiz-Ortega, M. et al. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: Molecular mechanisms. Circ. Res. 86, 1266–1272 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Ruiz-Ortega, M., Lorenzo, O., Ruperez, M., Suzuki, Y. & Egido, J. Angiotensin II activates nuclear transcription factor-kappaB in aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice. Nephrol. Dial. Transplant. 16(Suppl 1), 27–33 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Suzuki, Y. et al. Inflammation and angiotensin II. Int. J. Biochem. Cell Biol. 35, 881–900 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Ruiz-Ortega, M., Lorenzo, O., Ruperez, M., Blanco, J. & Egido, J. Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: Role of AT(1) and AT(2) receptors. Am. J. Pathol. 158, 1743–1756 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Wolf, G. “The road not taken”: Role of angiotensin II type 2 receptor in pathophysiology. Nephrol. Dial. Transplant. 17, 195–198 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Sabuhi, R., Ali, Q., Asghar, M., Al-Zamily, N. R. & Hussain, T. Role of the angiotensin II AT2 receptor in inflammation and oxidative stress: Opposing effects in lean and obese Zucker rats. Am. J. Physiol. Renal Physiol. 300, F700-706. https://doi.org/10.1152/ajprenal.00616.2010 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    EHS
    Back to top button