EHS
EHS

Inflammatory cytokines directly disrupt the bovine intestinal epithelial barrier


  • Collins, J. T., Nguyen, A. & Badireddy, M. Anatomy, Abdomen and Pelvis, Small Intestine (StatPearls, 2021).


    Google Scholar
     

  • Barrett, K. E. New ways of thinking about (and teaching about) intestinal epithelial function. Adv. Physiol. Educ. 32(1), 25–34 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Hamilton, I. et al. Small intestinal permeability in dermatological disease. Q. J. Med. 56(221), 559–567 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Harris, C. E. et al. Intestinal permeability in the critically ill. Intensive Care Med. 18(1), 38–41 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ukabam, S. O., Mann, R. J. & Cooper, B. T. Small intestinal permeability to sugars in patients with atopic eczema. Br. J. Dermatol. 110(6), 649–652 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wallaert, B. et al. Increased intestinal permeability in active pulmonary sarcoidosis. Am. Rev. Respir. Dis. 145(6), 1440–1445 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han, X., Fink, M. P. & Delude, R. L. Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19(3), 229–237 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, R. et al. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 285(3), G621–G629 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao, M. et al. Amelioration of IFN-gamma and TNF-alpha-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS ONE 8(5), e61944 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nahidi, L. et al. Differential effects of nutritional and non-nutritional therapies on intestinal barrier function in an in vitro model. J. Gastroenterol. 47(2), 107–117 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smyth, D. et al. Interferon-gamma-induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn. Lab Invest. 91(5), 764–777 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Madara, J. L. & Stafford, J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 83(2), 724–727 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aschenbach, J. R. et al. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J. Dairy Sci. 102(2), 1866–1882 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang, D. et al. Estimating US dairy clinical disease costs with a stochastic simulation model. J. Dairy Sci. 100(2), 1472–1486 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pascottini, O. B. et al. Effect of anti-inflammatory treatment on systemic inflammation, immune function, and endometrial health in postpartum dairy cows. Sci. Rep. 10(1), 5236 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanz-Fernandez, M. V. et al. Targeting the hindgut to improve health and performance in cattle. Animals (Basel) 10, 10 (2020).


    Google Scholar
     

  • Abuajamieh, M. et al. Inflammatory biomarkers are associated with ketosis in periparturient Holstein cows. Res. Vet. Sci. 109, 81–85 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khafipour, E., Krause, D. O. & Plaizier, J. C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 92(3), 1060–1070 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koch, F. et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc. Natl. Acad. Sci. USA 116(21), 10333–10338 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, S. et al. Short-term feed restriction impairs the absorptive function of the reticulo-rumen and total tract barrier function in beef cattle. J. Anim. Sci. 91(4), 1685–1695 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pate, R. T. et al. Immune and metabolic effects of rumen-protected methionine during a heat stress challenge in lactating Holstein cows. J. Anim. Sci. 99(12), 323 (2021).

    Article 

    Google Scholar
     

  • Luissint, A. C., Parkos, C. A. & Nusrat, A. Inflammation and the intestinal barrier: Leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 151(4), 616–632 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Groschwitz, K. R. & Hogan, S. P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124(1), 3–20 (2009) ((quiz 21-2)).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vancamelbeke, M. & Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Exp. Rev. Gastroenterol. Hepatol. 11(9), 821–834 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Pizarro, T. T. et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: Expression and localization in intestinal mucosal cells. J. Immunol. 162(11), 6829–6835 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Schroder, K. et al. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 75(2), 163–189 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spriggs, D. R., Deutsch, S. & Kufe, D. W. Genomic structure, induction, and production of TNF-alpha. Immunol. Ser. 56, 3–34 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • McNair, N. N. et al. Inflammasome components caspase-1 and adaptor protein apoptosis-associated speck-like proteins are important in resistance to Cryptosporidium parvum. Microbes Infect. 20(6), 369–375 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Siegmund, B. et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281(4), R1264–R1273 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163(6), 1444–1456 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cui, L. et al. Changes in the blood routine, biochemical indexes and the pro-inflammatory cytokine expressions of peripheral leukocytes in postpartum dairy cows with metritis. BMC Vet. Res. 15(1), 157 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • El-Deeb, W. M. & El-Bahr, S. M. Biomarkers of ketosis in dairy cows at postparturient period: Acute phase proteins and pro-inflammatory cytokines. Vet. Arhiv. 87(4), 431–440 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, C. et al. Inflammatory mechanism of Rumenitis in dairy cows with subacute ruminal acidosis. BMC Vet. Res. 14(1), 135 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kasimanickam, R. K. et al. Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows. Reprod. Biol. Endocrinol. 11, 103 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zachos, N. C. et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291(8), 3759–3766 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Derricott, H. et al. Developing a 3D intestinal epithelium model for livestock species. Cell Tissue Res. 375(2), 409–424 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Hamilton, C. A. et al. Development of in vitro enteroids derived from bovine small intestinal crypts. Vet. Res. 49(1), 54 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rallabandi, H. R. et al. Evaluation of intestinal epithelial barrier function in inflammatory bowel diseases using murine intestinal organoids. Tissue Eng. Regen. Med. 17(5), 641–650 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu, P. et al. Intestinal organoid culture model is a valuable system to study epithelial barrier function in IBD. Gut 67(10), 1905–1906 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crakes, K. R. et al. Fenofibrate promotes PPARalpha-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus. Sci. Rep. 11(1), 13454 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Armien, A. G. et al. Molecular and biological characterization of a cervidpoxvirus isolated from moose with necrotizing dermatitis. Vet. Pathol. 57(2), 296–310 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gonschior, H. V., Haucke, & Lehmann, M. Super-resolution imaging of tight and adherens junctions: Challenges and open questions. Int. J. Mol. Sci. 21, 3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Bosque, A. et al. Dietary intervention with serum-derived bovine immunoglobulins protects barrier function in a mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 308(12), G1012–G1018 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 281(1), 138–153 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bardenbacher, M. et al. Permeability analyses and three dimensional imaging of interferon gamma-induced barrier disintegration in intestinal organoids. Stem Cell Res. 35, 101383 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Onozato, D. et al. Application of human induced pluripotent stem cell-derived intestinal organoids as a model of epithelial damage and fibrosis in inflammatory bowel disease. Biol. Pharm. Bull. 43(7), 1088–1095 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Blum, M. S. et al. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am. J. Physiol. 273(1 Pt 2), H286–H294 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Gitter, A. H. et al. Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha. Ann. N. Y. Acad. Sci. 915, 193–203 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McKay, D. M. & Singh, P. K. Superantigen activation of immune cells evokes epithelial (T84) transport and barrier abnormalities via IFN-gamma and TNF alpha: Inhibition of increased permeability, but not diminished secretory responses by TGF-beta2. J. Immunol. 159(5), 2382–2390 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Mullin, J. M. & Snock, K. V. Effect of tumor necrosis factor on epithelial tight junctions and transepithelial permeability. Cancer Res. 50(7), 2172–2176 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez, P. et al. Tumour necrosis factor-alpha induces morphological and functional alterations of intestinal HT29 cl.19A cell monolayers. Cytokine 7(5), 441–448 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Youakim, A. & Ahdieh, M. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am. J. Physiol. 276(5), G1279–G1288 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Sadi, R., Boivin, M. & Ma, T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. (Landmark Ed.) 14(7), 2765–2778 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Madara, J. L. Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 60, 143–159 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, X. et al. Exploring tight junction alteration using double fluorescent probe combination of lanthanide complex with gold nanoclusters. Sci. Rep. 6, 32218 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butkevych, E. et al. Contribution of epithelial apoptosis and subepithelial immune responses in Campylobacter jejuni-induced barrier disruption. Front. Microbiol. 11, 344 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359(6382), 1376–1383 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu, C.-H. et al. Apical Actin-Myosin Network Regulates the Tight Junction of Polarized Madin-Darby Canine Kidney Cells. bioRxiv (2021).

  • Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474(7351), 298–306 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Croitoru, K. & Zhou, P. T-cell-induced mucosal damage in the intestine. Curr. Opin. Gastroenterol. 20(6), 581–586 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Ramachandran, A., Madesh, M. & Balasubramanian, K. A. Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions. J. Gastroenterol. Hepatol. 15(2), 109–120 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Croinin, T. O. & Backert, S. Host epithelial cell invasion by Campylobacter jejuni: Trigger or zipper mechanism?. Front. Cell Infect. Microbiol. 2, 25 (2012).

    Article 

    Google Scholar
     

  • Gunzel, D. et al. Restitution of single-cell defects in the mouse colon epithelium differs from that of cultured cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290(6), R1496–R1507 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grabinger, T. et al. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 5, e1228 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanai, T. et al. Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn’s disease. Gastroenterology 119(6), 1514–1523 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakamura, S. et al. Expression and responsiveness of human interleukin-18 receptor (IL-18R) on hematopoietic cell lines. Leukemia 14(6), 1052–1059 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Workman, M. J. et al. Modeling intestinal epithelial response to interferon-gamma in induced pluripotent stem cell-derived human intestinal organoids. Int. J. Mol. Sci. 22(1), 288 (2020).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     



  • Source link

    EHS
    Back to top button