EHS
EHS

Evaluating the performance of Bayesian and frequentist approaches for longitudinal modeling: application to Alzheimer’s disease


  • Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B. & Sabuncu, M. R. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. Neuroimage 66, 249–260 (2013).

    Article 

    Google Scholar
     

  • Cespedes, M. I. et al. Comparisons of neurodegeneration over time between healthy ageing and Alzheimer’s disease cohorts via Bayesian inference. BMJ Open 7, e012174 (2017).

    Article 

    Google Scholar
     

  • Ziegler, G., Penny, W. D., Ridgway, G. R., Ourselin, S. & Friston, K. J. Estimating anatomical trajectories with Bayesian mixed-effects modeling. Neuroimage 121, 51–68 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Bliese, P. D. Within-Group Agreement, Non-independence, and Reliability: Implications for Data Aggregation and Analysis (ScienceOpen, 2000).


    Google Scholar
     

  • Guerrero, R. et al. Instantiated mixed effects modeling of Alzheimer’s disease markers. Neuroimage 142, 113–125 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Rivera-Lares, K., Logie, R., Baddeley, A. & Della Sala, S. Rate of forgetting is independent of initial degree of learning. Mem. Cognit. https://doi.org/10.3758/s13421-021-01271-1 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kieser, M., Friede, T. & Gondan, M. Assessment of statistical significance and clinical relevance. Stat. Med. 32, 1707–1719 (2013).

    MathSciNet 
    Article 

    Google Scholar
     

  • Van Rijn, M. H. C., Bech, A., Bouyer, J. & Van Den Brand, J. A. J. G. Statistical significance versus clinical relevance. Nephrol. Dial. Transplant. 32, 6–12 (2017).


    Google Scholar
     

  • Aksman, L. M. et al. Modeling longitudinal imaging biomarkers with parametric Bayesian multi-task learning. Hum. Brain Mapp. 40, 3982–4000 (2019).

    Article 

    Google Scholar
     

  • Temp, A. G. M. et al. How Bayesian statistics may help answer some of the controversial questions in clinical research on Alzheimer’s disease. Alzheimer’s Dement. 17, 917–919 (2021).

    Article 

    Google Scholar
     

  • Lesaffre, E. & Lawson, A. B. Bayesian Biostatistics (Wiley, 2012).

    Book 

    Google Scholar
     

  • Wilkinson, M. Distinguishing between statistical significance and practical/clinical meaningfulness using statistical inference. Sports Med. 44, 295–301 (2014).

    Article 

    Google Scholar
     

  • Hespanhol, L., Vallio, C. S., Costa, L. M. & Saragiotto, B. T. Understanding and interpreting confidence and credible intervals around effect estimates. Braz. J. Phys. Ther. 23, 290–301 (2019).

    Article 

    Google Scholar
     

  • Berry, D. A. Bayesian clinical trials. Nat. Rev. Drug Discov. 5, 27–36 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Gurrin, L. C., Kurinczuk, J. J. & Burton, P. R. Bayesian statistics in medical research: An intuitive alternative to conventional data analysis. J. Eval. Clin. Pract. 6, 193–204 (2000).

    CAS 
    Article 

    Google Scholar
     

  • van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M. & Depaoli, S. A systematic review of Bayesian articles in psychology: The last 25 years. Psychol. Methods 22, 217–239 (2017).

    Article 

    Google Scholar
     

  • Wagenmakers, E. J. et al. Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychon. Bull. Rev. 25, 35–57 (2018).

    Article 

    Google Scholar
     

  • Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Hardy, J. Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154–159 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Jack, C. R. et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 14, 535–562 (2018).

    Article 

    Google Scholar
     

  • Petersen, R. C. et al. Alzheimer’s disease neuroimaging Initiative (ADNI): Clinical characterization. Neurology 74, 201–209 (2010).

    Article 

    Google Scholar
     

  • Caroli, A. & Frisoni, G. B. The dynamics of Alzheimer’s disease biomarkers in the Alzheimer’s Disease Neuroimaging Initiative cohort. Neurobiol. Aging 31, 1263–1274 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Dickerson, B. C. et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol. Aging 22, 747–754 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Jack, C. R. et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55, 484–489 (2000).

    Article 

    Google Scholar
     

  • Schuff, N. et al. MRI of hippocampal volume loss in early Alzheimers disease in relation to ApoE genotype and biomarkers. Brain 132, 1067–1077 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, L. et al. Longitudinal trajectory of Amyloid-related hippocampal subfield atrophy in nondemented elderly. Hum. Brain Mapp. 41, 2037–2047 (2020).

    Article 

    Google Scholar
     

  • Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418 (2012).

    Article 

    Google Scholar
     

  • Landau, S. & Jagust, W. Florbetapir Processing Methods (2015).

  • Buckner, R. L. et al. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage 23, 724–738 (2004).

    Article 

    Google Scholar
     

  • Jack, C. R. et al. Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70, 1740–1752 (2008).

    Article 

    Google Scholar
     

  • Fitzmaurice, G. M., Laird, N. M. & Ware, J. H. Applied Longitudinal Analysis (Wiley, 2011).

    Book 

    Google Scholar
     

  • Satterthwaite, F. E. An approximate distribution of estimates of variance components. Biometr. Bull. 2, 110 (1946).

    CAS 
    Article 

    Google Scholar
     

  • Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D. & Wagenmakers, E. J. The fallacy of placing confidence in confidence intervals. Psychon. Bull. Rev. 23, 103–123 (2016).

    Article 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 201–210 (2015).

    Article 

    Google Scholar
     

  • Team, S. D. RStan: The R interface to Sta (2020).

  • Sorensen, T., Hohenstein, S. & Vasishth, S. Bayesian linear mixed models using Stan: A tutorial for psychologists, linguists, and cognitive scientists. Quant. Methods Psychol. 12, 175–200 (2015).

    Article 

    Google Scholar
     

  • Hubbard, R. Corrupt Research: The Case for Reconceptualizing Empirical Management and Social Science (SAGE, 2016). https://doi.org/10.4135/9781506305332.

    Book 

    Google Scholar
     

  • Ziliak, S. & McCloskey, D. The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives (University of Michigan Press, 2008).

    MATH 

    Google Scholar
     

  • Pocock, S. J. & Hughes, M. D. Estimation issues in clinical trials and overviews. Stat. Med. 9, 657–671 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Li, D. et al. Bayesian latent time joint mixed-effects model of progression in the Alzheimer’s disease neuroimaging initiative. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 10, 657–668 (2018).


    Google Scholar
     

  • Staffaroni, A. M. et al. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials. Brain 142, 443–459 (2019).

    Article 

    Google Scholar
     

  • McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 263–269 (2011).

    Article 

    Google Scholar
     

  • Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 270–279 (2011).

    Article 

    Google Scholar
     



  • Source link

    EHS
    Back to top button