EHS
EHS

Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies


  • Drossman, D. A. & Tack, J. Rome Foundation clinical diagnostic criteria for disorders of gut-brain interaction. Gastroenterology 162, 675–679 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Ford, A. C., Sperber, A. D., Corsetti, M. & Camilleri, M. Irritable bowel syndrome. Lancet 396, 1675–1688 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drossman, D. A. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology 150, 1262–1279 (2016).

    Article 

    Google Scholar
     

  • Drossman, D. A. & Hasler, W. L. Rome IV–functional GI disorders: disorders of gut-brain interaction. Gastroenterology 150, 1257–1261 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buono, J. L., Carson, R. T. & Flores, N. M. Health-related quality of life, work productivity, and indirect costs among patients with irritable bowel syndrome with diarrhea. Health Qual. Life Outcomes 15, 35 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frändemark, Å., Törnblom, H., Jakobsson, S. & Simrén, M. Work productivity and activity impairment in irritable bowel syndrome (IBS): a multifaceted problem. Am. J. Gastroenterol. 113, 1540–1549 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Camilleri, M. Diagnosis and treatment of irritable bowel syndrome: a review. JAMA 325, 865–877 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drossman, D. A. Do psychosocial factors define symptom severity and patient status in irritable bowel syndrome? Am. J. Med. 107, 41–50 (1999).

    Article 

    Google Scholar
     

  • Palsson, O. S. & Drossman, D. A. Psychiatric and psychological dysfunction in irritable bowel syndrome and the role of psychological treatments. Gastroenterol. Clin. North. Am. 34, 281–303 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ohman, L. & Simrén, M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat. Rev. Gastroenterol. Hepatol. 7, 163–173 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Bennet, S. M. P., Ohman, L. & Simren, M. Gut microbiota as potential orchestrators of irritable bowel syndrome. Gut Liver 9, 318–331 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moayyedi, P., Simrén, M. & Bercik, P. Evidence-based and mechanistic insights into exclusion diets for IBS. Nat. Rev. Gastroenterol. Hepatol. 17, 406–413 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lackner, J. M. et al. Type, rather than number, of mental and physical comorbidities increases the severity of symptoms in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 11, 1147–1157 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • D’Amato, M. Genes and functional GI disorders: from casual to causal relationship. Neurogastroenterol. Motil. 25, 638–649 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Waehrens, R., Ohlsson, H., Sundquist, J., Sundquist, K. & Zöller, B. Risk of irritable bowel syndrome in first-degree, second-degree and third-degree relatives of affected individuals: a nationwide family study in Sweden. Gut 64, 215–221 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Camilleri, M. Genetics and irritable bowel syndrome: from genomics to intermediate phenotype and pharmacogenetics. Dig. Dis. Sci. 54, 2318–2324 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heitkemper, M. M., Kohen, R., Jun, S.-E. & Jarrett, M. E. Genetics and gastrointestinal symptoms. Annu. Rev. Nurs. Res. 29, 261–280 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Saito, Y. A. The role of genetics in IBS. Gastroenterol. Clin. North. Am. 40, 45–67 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grudell, A. B. M. et al. An exploratory study of the association of adrenergic and serotonergic genotype and gastrointestinal motor functions. Neurogastroenterol. Motil. 20, 213–219 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Camilleri, M. et al. Alterations in expression of p11 and SERT in mucosal biopsy specimens of patients with irritable bowel syndrome. Gastroenterology 132, 17–25 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, H. J. et al. Association of distinct α2 adrenoceptor and serotonin transporter polymorphisms with constipation and somatic symptoms in functional gastrointestinal disorders. Gut 53, 829–837 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Camilleri, M. et al. Serotonin-transporter polymorphism pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology 123, 425–432 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mohr, S. et al. The alternative serotonin transporter promoter P2 impacts gene function in females with irritable bowel syndrome. J. Cell. Mol. Med. 25, 8047–8061 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gunn, D. et al. Abnormalities of mucosal serotonin metabolism and 5-HT3 receptor subunit 3C polymorphism in irritable bowel syndrome with diarrhoea predict responsiveness to ondansetron. Aliment. Pharmacol. Ther. 50, 538–546 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wohlfarth, C. et al. miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome. Sci. Rep. 7, 14680 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kilpatrick, L. et al. The HTR3A polymorphism c. -42C>T is associated with amygdala responsiveness in patients with irritable bowel syndrome. Gastroenterology 140, 1943–1951 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niesler, B. et al. 5-HTTLPR and STin2 polymorphisms in the serotonin transporter gene and irritable bowel syndrome: effect of bowel habit and sex. Eur. J. Gastroenterol. Hepatol. 22, 856–861 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kapeller, J. et al. First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet. 17, 2967–2977 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Y. et al. The association of serotonin transporter genetic polymorphisms and irritable bowel syndrome and its influence on tegaserod treatment in Chinese patients. Dig. Dis. Sci. 52, 2942–2949 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boesmans, W., Owsianik, G., Tack, J., Voets, T. & Vanden Berghe, P. TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br. J. Pharmacol. 162, 18–37 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fuentes, I. M. & Christianson, J. A. Ion channels, ion channel receptors, and visceral hypersensitivity in irritable bowel syndrome. Neurogastroenterol. Motil. 28, 1613–1618 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Locke, G. R., Ackerman, M. J., Zinsmeister, A. R., Thapa, P. & Farrugia, G. Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy. Am. J. Gastroenterol. 101, 1299–1304 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beyder, A. et al. Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome. Gastroenterology 146, 1659–1668 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strege, P. R. et al. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G494–G503 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanders, K. M., Ward, S. M. & Koh, S. D. Interstitial cells: regulators of smooth muscle function. Physiol. Rev. 94, 859–907 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Henström, M. et al. TRPM8 polymorphisms associated with increased risk of IBS-C and IBS-M. Gut 66, 1725–1727 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Khanna, R., MacDonald, J. K. & Levesque, B. G. Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J. Clin. Gastroenterol. 48, 505–512 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Gericke, B., Amiri, M. & Naim, H. Y. The multiple roles of sucrase-isomaltase in the intestinal physiology. Mol. Cell. Pediatr. 3, 2 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gericke, B., Amiri, M., Scott, C. R. & Naim, H. Y. Molecular pathogenicity of novel sucrase-isomaltase mutations found in congenital sucrase-isomaltase deficiency patients. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 817–826 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alfalah, M., Keiser, M., Leeb, T., Zimmer, K.-P. & Naim, H. Y. Compound heterozygous mutations affect protein folding and function in patients with congenital sucrase-isomaltase deficiency. Gastroenterology 136, 883–892 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foley, A. et al. Adult sucrase-isomaltase deficiency masquerading as IBS. Gut 71, 1237–1238 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Muldoon, C., Maguire, P. & Gleeson, F. Onset of sucrase-isomaltase deficiency in late adulthood. Am. J. Gastroenterol. 94, 2298–2299 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ringrose, R. E., Preiser, H. & Welsh, J. D. Sucrase-isomaltase (palatinase) deficiency diagnosed during adulthood. Dig. Dis. Sci. 25, 384–387 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Henström, M. et al. Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. Gut 67, 263–270 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Thingholm, L. et al. Sucrase-isomaltase 15Phe IBS risk variant in relation to dietary carbohydrates and faecal microbiota composition. Gut 68, 177–178 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Garcia-Etxebarria, K. et al. Increased prevalence of rare sucrase-isomaltase pathogenic variants in irritable bowel syndrome patients. Clin. Gastroenterol. Hepatol. 16, 1673–1676 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chumpitazi, B. P. et al. Hypomorphic SI genetic variants are associated with childhood chronic loose stools. PLoS ONE 15, e0231891 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng, T. et al. Rare hypomorphic sucrase isomaltase variants in relation to irritable bowel syndrome risk in UK biobank. Gastroenterology 161, 1712–1714 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, T. et al. Reduced efficacy of low FODMAPs diet in patients with IBS-D carrying sucrase-isomaltase (SI) hypomorphic variants. Gut 69, 397–398 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Nilholm, C., Roth, B. & Ohlsson, B. A dietary intervention with reduction of starch and sucrose leads to reduced gastrointestinal and extra-intestinal symptoms in IBS patients. Nutrients 11, E1662 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dubois, P. C. A. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coleman, C. et al. Common polygenic variation in coeliac disease and confirmation of ZNF335 and NIFA as disease susceptibility loci. Eur. J. Hum. Genet. 24, 291–297 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smyth, D. J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jefremow, A. & Neurath, M. F. All are equal, some are more equal: targeting IL 12 and 23 in IBD – a clinical perspective. Immunotargets Ther. 9, 289–297 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seyed Tabib, N. S. et al. Big data in IBD: big progress for clinical practice. Gut 69, 1520–1532 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gettler, K. et al. Common and rare variant prediction and penetrance of IBD in a large, multi-ethnic, health system-based biobank cohort. Gastroenterology 160, 1546–1557 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 59 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wijmenga, C. & Zhernakova, A. The importance of cohort studies in the post-GWAS era. Nat. Genet. 50, 322–328 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bycroft, C. et al. The UK biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eijsbouts, C. et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 53, 1543–1552 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ek, W. E. et al. Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts. Gut 64, 1774–1782 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Holliday, E. G. et al. Genome-wide association study identifies two novel genomic regions in irritable bowel syndrome. Am. J. Gastroenterol. 109, 770–772 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bonfiglio, F. et al. A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol. Motil. 30, e13358 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bonfiglio, F. et al. Female-specific association between variants on chromosome 9 and self-reported diagnosis of irritable bowel syndrome. Gastroenterology 155, 168–179 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heitkemper, M., Jarrett, M., Bond, E. F. & Chang, L. Impact of sex and gender on irritable bowel syndrome. Biol. Res. Nurs. 5, 56–65 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Kim, Y. S. & Kim, N. Sex-gender differences in irritable bowel syndrome. J. Neurogastroenterol. Motil. 24, 544–558 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Whitehead, W. E. et al. Evidence for exacerbation of irritable bowel syndrome during menses. Gastroenterology 98, 1485–1489 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Norcliffe-Kaufmann, L., Slaugenhaupt, S. A. & Kaufmann, H. Familial dysautonomia: history, genotype, phenotype and translational research. Prog. Neurobiol. 152, 131–148 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Camilleri, M. Gastrointestinal motility disorders in neurologic disease. J. Clin. Invest. 131, 143771 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Tillisch, K. et al. Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut 54, 1396–1401 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Viramontes, B. E. et al. Gender-related differences in slowing colonic transit by a 5-HT3 antagonist in subjects with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 96, 2671–2676 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hogan, A. M., Collins, D., Baird, A. W. & Winter, D. C. Estrogen and its role in gastrointestinal health and disease. Int. J. Colorectal Dis. 24, 1367–1375 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Taché, Y. & Bonaz, B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J. Clin. Invest. 117, 33–40 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bernstein, M. T. et al. Gastrointestinal symptoms before and during menses in healthy women. BMC Women’s Health 14, 14 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meleine, M. & Matricon, J. Gender-related differences in irritable bowel syndrome: potential mechanisms of sex hormones. World J. Gastroenterol. 20, 6725–6743 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Houghton, L. A., Lea, R., Jackson, N. & Whorwell, P. J. The menstrual cycle affects rectal sensitivity in patients with irritable bowel syndrome but not healthy volunteers. Gut 50, 471–474 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, Y. et al. GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nat. Commun. 12, 1146 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boutwell, B. et al. Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon 3, e00349 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pasman, J. A. et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat. Neurosci. 21, 1161–1170 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frei, J. A., Andermatt, I., Gesemann, M. & Stoeckli, E. T. The SynCAM synaptic cell adhesion molecules are involved in sensory axon pathfinding by regulating axon-axon contacts. J. Cell. Sci. 127, 5288–5302 (2014).

    PubMed 

    Google Scholar
     

  • Ibrahim-Verbaas, C. A. et al. GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol. Psychiatry 21, 189–197 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petrovska, J. et al. The NCAM1 gene set is linked to depressive symptoms and their brain structural correlates in healthy individuals. J. Psychiatr. Res. 91, 116–123 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Schmid, R. S. & Maness, P. F. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr. Opin. Neurobiol. 18, 245–250 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pappa, S. et al. PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors. Proc. Natl Acad. Sci. USA 116, 19464–19473 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi, L. Dock protein family in brain development and neurological disease. Commun. Integr. Biol. 6, e26839 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Detera-Wadleigh, S. D. et al. Sequence variation in DOCK9 and heterogeneity in bipolar disorder. Psychiatr. Genet. 17, 274–286 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Kuramoto, K., Negishi, M. & Katoh, H. Regulation of dendrite growth by the Cdc42 activator Zizimin1/Dock9 in hippocampal neurons. J. Neurosci. Res. 87, 1794–1805 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. & van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 9, 905 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Whitehead, W. E., Palsson, O. & Jones, K. R. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 122, 1140–1156 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Camilleri, M. & Katzka, D. A. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1075–G1084 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Camilleri, M. et al. Neuropeptide S receptor induces neuropeptide expression and associates with intermediate phenotypes of functional gastrointestinal disorders. Gastroenterology 138, 98–107.e4 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wong, B. S. et al. A Klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea. Gastroenterology 140, 1934–1942 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • D’Amato, M. et al. Neuropeptide s receptor 1 gene polymorphism is associated with susceptibility to inflammatory bowel disease. Gastroenterology 133, 808–817 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Camilleri, M. & Nurko, S. Bile acid diarrhea in adults and adolescents. Neurogastroenterol. Motil. 34, e14287 (2021).

    PubMed 

    Google Scholar
     

  • Henström, M. et al. NPSR1 polymorphisms influence recurrent abdominal pain in children: a population-based study. Neurogastroenterol. Motil. 26, 1417–1425 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Degen, L. P. & Phillips, S. F. How well does stool form reflect colonic transit? Gut 39, 109–113 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zinsmeister, A. R., Burton, D. & Camilleri, M. Pharmacodynamic and clinical endpoints for functional colonic disorders: statistical considerations. Dig. Dis. Sci. 58, 509–518 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jankipersadsing, S. A. et al. A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency. Gut 66, 756–758 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bonfiglio, F. et al. GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. Cell Genom. https://doi.org/10.1016/j.xgen.2021.100069 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622.e23 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hing, B. et al. A polymorphism associated with depressive disorders differentially regulates brain derived neurotrophic factor promoter IV activity. Biol. Psychiatry 71, 618–626 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maisonpierre, P. C. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Di Carlo, P., Punzi, G. & Ursini, G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr. Genet. 29, 200–210 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu, S. Neurotrophic factors in enteric physiology and pathophysiology. Neurogastroenterol. Motil. 30, e13446 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grider, J. R., Piland, B. E., Gulick, M. A. & Qiao, L. Y. Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release. Gastroenterology 130, 771–780 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chai, N.-L. et al. Effects of neurotrophins on gastrointestinal myoelectric activities of rats. World J. Gastroenterol. 9, 1874–1877 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, F. et al. Brain-derived neurotrophic factor accelerates gut motility in slow-transit constipation. Acta Physiol. 212, 226–238 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Coulie, B. et al. Recombinant human neurotrophic factors accelerate colonic transit and relieve constipation in humans. Gastroenterology 119, 41–50 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taché, Y., Garrick, T. & Raybould, H. Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology 98, 517–528 (1990).

    PubMed 
    Article 

    Google Scholar
     

  • Taché, Y., Kolve, E., Maeda-Hagiwara, M. & Kauffman, G. L. Central nervous system action of calcitonin to alter experimental gastric ulcers in rats. Gastroenterology 94, 145–150 (1988).

    PubMed 
    Article 

    Google Scholar
     

  • Fukudo, S., Nomura, T. & Hongo, M. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome. Gut 42, 845–849 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stengel, A. & Taché, Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu. Rev. Physiol. 71, 219–239 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaji, I. et al. Free fatty acid receptor 3 activation suppresses neurogenic motility in rat proximal colon. Neurogastroenterol. Motil. 30, 13157 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nøhr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138, 1772–1782 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sinha, T. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes 10, 358–366 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shastri, P., McCarville, J., Kalmokoff, M., Brooks, S. P. J. & Green-Johnson, J. M. Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biol. Sex. Differ. 6, 13 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome–a systematic review. Gastroenterology 157, 97–108 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Agnello, M. et al. Gut microbiome composition and risk factors in a large cross-sectional IBS cohort. BMJ Open Gastroenterol. 7, e000345 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl Med. 10, eaap8914 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Botschuijver, S. et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153, 1026–1039 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Mihindukulasuriya, K. A. et al. Multi-omics analyses show disease, diet, and transcriptome interactions with the virome. Gastroenterology 161, 1194–1207.e8 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hadizadeh, F. et al. Stool frequency is associated with gut microbiota composition. Gut 66, 559–560 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Tigchelaar, E. F. et al. Gut microbiota composition associated with stool consistency. Gut 65, 540–542 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanna, S., Kurilshikov, A., van der Graaf, A., Fu, J. & Zhernakova, A. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat. Genet. 54, 100–106 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079–1087 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rühlemann, M. C. et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 53, 147–155 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134–142 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Olds, L. C. & Sibley, E. Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element. Hum. Mol. Genet. 12, 2333–2340 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morales, E. et al. The European lactase persistence genotype determines the lactase persistence state and correlates with gastrointestinal symptoms in the Hispanic and Amerindian Chilean population: a case–control and population-based study. BMJ Open 1, e000125 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brandao Gois, M. F. et al. Role of the gut microbiome in mediating lactose intolerance symptoms. Gut 71, 215–217 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poole, A. C. et al. Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe 25, 553–564.e7 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases. Preprint at medRxiv https://doi.org/10.1101/2021.11.19.21266436 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camilleri, M. & Chedid, V. Actionable biomarkers: the key to resolving disorders of gastrointestinal function. Gut 69, 1730–1737 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scholtens, S. et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int. J. Epidemiol. 44, 1172–1180 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat. Med. 27, 1876–1884 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • DeBoever, C. et al. Assessing digital phenotyping to enhance genetic studies of human diseases. Am. J. Hum. Genet. 106, 611–622 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article 

    Google Scholar
     

  • Kawahara, H., Minami, R. & Yokota, N. BAG6/BAT3: emerging roles in quality control for nascent polypeptides. J. Biochem. 153, 147–160 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Binici, J. & Koch, J. BAG-6, a jack of all trades in health and disease. Cell. Mol. Life Sci. 71, 1829–1837 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheishvili, D. et al. IKAP/Elp1 involvement in cytoskeleton regulation and implication for familial dysautonomia. Hum. Mol. Genet. 20, 1585–1594 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jackson, M. Z., Gruner, K. A., Qin, C. & Tourtellotte, W. G. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141, 2452–2461 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Malumbres, M. et al. Cyclin-dependent kinases: a family portrait. Nat. Cell Biol. 11, 1275–1276 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cole, A. R. PCTK proteins: the forgotten brain kinases? Neurosignals 17, 288–297 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vieira, N., Rito, T., Correia-Neves, M. & Sousa, N. Sorting out sorting nexins functions in the nervous system in health and disease. Mol. Neurobiol. 58, 4070–4106 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin, Q. et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 6, e478 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rooman, I. et al. Expression of the Notch signaling pathway and effect on exocrine cell proliferation in adult rat pancreas. Am. J. Pathol. 169, 1206–1214 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kadur Lakshminarasimha Murthy, P. et al. Radical and lunatic fringes modulate notch ligands to support mammalian intestinal homeostasis. eLife 7, e35710 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katoh, M. & Katoh, M. Notch signaling in gastrointestinal tract (review). Int. J. Oncol. 30, 247–251 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Ratanasirintrawoot, S. & Israsena, N. Stem cells in the intestine: possible roles in pathogenesis of irritable bowel syndrome. J. Neurogastroenterol. Motil. 22, 367–382 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • W, C. et al. SCF-FBXO24 regulates cell proliferation by mediating ubiquitination and degradation of PRMT6. Biochem. Biophys. Res. Commun. 530, 75–81 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moore, S. W. & Johnson, G. Acetylcholinesterase in Hirschsprung’s disease. Pediatr. Surg. Int. 21, 255–263 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soreq, H. & Seidman, S. Acetylcholinesterase–new roles for an old actor. Nat. Rev. Neurosci. 2, 294–302 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Demir, I. E., Schäfer, K.-H., Tieftrunk, E., Friess, H. & Ceyhan, G. O. Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity. Acta Neuropathol. 125, 491–509 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kano, M. et al. Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci. Rep. 7, 12425 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sagami, Y. et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 53, 958–964 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taché, Y. & Million, M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia. J. Neurogastroenterol. Motil. 21, 8–24 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gee, H. Y., Tang, B. L., Kim, K. H. & Lee, M. G. Syntaxin 16 binds to cystic fibrosis transmembrane conductance regulator and regulates its membrane trafficking in epithelial cells. J. Biol. Chem. 285, 35519–35527 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang, B. L. Syntaxin 16’s newly deciphered roles in autophagy. Cells 8, E1655 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Longstreth, G. F. et al. Functional bowel disorders. Gastroenterology 130, 1480–1491 (2006).

    PubMed 
    Article 

    Google Scholar
     



  • Source link

    EHS
    Back to top button