EHS
EHS

Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities


  • Ohyama, Y., Redheuil, A., Kachenoura, N., Ambale Venkatesh, B. & Lima, J. A. C. Imaging insights on the aorta in aging. Circ. Cardiovasc. Imaging 11, e005617 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Teixido-Tura, G. et al. Aortic biomechanics by magnetic resonance: early markers of aortic disease in Marfan syndrome regardless of aortic dilatation? Int J. Cardiol. 171, 56–61 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • de Wit, A., Vis, K. & Jeremy, R. W. Aortic stiffness in heritable aortopathies: relationship to aneurysm growth rate. Heart Lung Circ. 22, 3–11 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Nollen, G. J., Groenink, M., Tijssen, J. G., Van Der Wall, E. E. & Mulder, B. J. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur. Heart J. 25, 1146–1152 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Redheuil, A. et al. Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: the MESA study. J. Am. Coll. Cardiol. 64, 2619–2629 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mattace-Raso, F. U. et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113, 657–663 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Ben-Shlomo, Y. et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 63, 636–646 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Cuspidi, C. et al. Aortic root diameter and risk of cardiovascular events in a general population: data from the PAMELA study. J. Hypertens. 32, 1879–1887 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kamimura, D. et al. Increased proximal aortic diameter is associated with risk of cardiovascular events and all-cause mortality in blacks the Jackson Heart Study. J. Am. Heart Assoc. 6, https://doi.org/10.1161/JAHA.116.005005 (2017).

  • Lam, C. S. et al. Aortic root remodeling and risk of heart failure in the Framingham Heart study. JACC Heart Fail. 1, 79–83 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • de Roos, A., van der Grond, J., Mitchell, G. & Westenberg, J. Magnetic resonance imaging of cardiovascular function and the brain: is dementia a cardiovascular-driven disease. Circulation 135, 2178–2195 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Sloten, T. T. et al. Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 53, 121–130 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qiu, C., Winblad, B., Viitanen, M. & Fratiglioni, L. Pulse pressure and risk of Alzheimer disease in persons aged 75 years and older: a community-based, longitudinal study. Stroke 34, 594–599 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Raisi-Estabragh, Z. et al. Associations of cognitive performance with cardiovascular magnetic resonance phenotypes in the UK Biobank. Eur. Heart J. Cardiovasc. Imaging, https://doi.org/10.1093/ehjci/jeab075 (2021).

  • Moroni, F. et al. Cardiovascular disease and brain health: Focus on white matter hyperintensities. Int J. Cardiol. Heart Vasc. 19, 63–69 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debette, S., Schilling, S., Duperron, M. G., Larsson, S. C. & Markus, H. S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 76, 81–94 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • King, K. S. et al. White matter hyperintensities: use of aortic arch pulse wave velocity to predict volume independent of other cardiovascular risk factors. Radiology 267, 709–717 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mitchell, G. F. et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility-Reykjavik study. Brain 134, 3398–3407 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Henskens, L. H. et al. Increased aortic pulse wave velocity is associated with silent cerebral small-vessel disease in hypertensive patients. Hypertension 52, 1120–1126 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cocciolone, A. J. et al. Elastin, arterial mechanics, and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 315, H189–H205 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duca, L. et al. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc. Res. 110, 298–308 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bai, W. et al. Recurrent Neural Networks for Aortic Image Sequence Segmentation with Sparse Annotations. In: (eds Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C. & Fichtinger, G.). Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol 11073. Springer, Cham. https://doi.org/10.1007/978-3-030-00937-3_67 (2018).

  • Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bai, W. et al. A population-based phenome-wide association study of cardiac and aortic structure and function. Nat. Med. 26, 1654–1662 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 50, 229–237 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Consortium, G. GTEx v8 2021: https://gtexportal.org/home/.

  • Pirruccello, J. Deep learning enables genetic analysis of the human thoracic aorta. BioRXiV https://doi.org/10.1101/2020.05.12.091934 (2020).

  • Tcheandjieu, C. High heritability of ascending aortic diameter and multi-ethnic prediction of thoracic aortic disease. MedRXiV https://doi.org/10.1101/2020.05.29.20102335 (2021).

  • Benjamins, J. W. et al. Genomic insights in ascending aortic size and distensibility. EBioMedicine 75, 103783 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Volzke, H. et al. Cohort profile: the study of health in Pomerania. Int J. Epidemiol. 40, 294–307 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nat. Commun. 10, 3616 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Boucher, P. et al. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS One 2, e448 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Elbitar, S. et al. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genet. Med. 23, 111–122 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Joannes, A. et al. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am. J. Physiol. Lung Cell Mol. Physiol. 310, L615–629 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Wu, X. et al. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol. 20, 46–59 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lang, W. et al. Identification of shared genes between ischemic stroke and Parkinson’s Disease using genome-wide association studies. Front. Neurol. 10, 297 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, W. et al. A single-cell transcriptomic landscape of primate arterial aging. Nat. Commun. 11, 2202 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sargurupremraj, M. et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat. Commun. 11, 6285 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tzourio, C., Cohen, A., Lamisse, N., Biousse, V. & Bousser, M. G. Aortic root dilatation in patients with spontaneous cervical artery dissection. Circulation 95, 2351–2353 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozel, B. A. et al. Williams syndrome. Nat. Rev. Dis. Prim. 7, 42 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Van Maldergem, L. & Loeys, B. in GeneReviews(R) (eds R. A. Pagon et al.) (1993).

  • Loeys, B. et al. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum. Mol. Genet. 11, 2113–2118 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, N. et al. Mutations in the histone modifier PRDM6 are associated with isolated nonsyndromic patent ductus arteriosus. Am. J. Hum. Genet. 99, 1000 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hiraki, Y. et al. Aortic aneurysm and craniosynostosis in a family with Cantu syndrome. Am. J. Med Genet. A 164A, 231–236 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walsh, R., Rutland, C., Thomas, R. & Loughna, S. Cardiomyopathy: a systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations. Cardiology 115, 49–60 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kirk, E. P. et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 81, 280–291 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rooryck, C. et al. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat. Genet. 43, 197–203 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, D. C. et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ. Res. 118, 928–934 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, D. C. et al. Genetic variants in LRP1 and ULK4 are associated with acute aortic dissections. Am. J. Hum. Genet. 99, 762–769 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pyeritz, R. E. Heritable thoracic aortic disorders. Curr. Opin. Cardiol. 29, 97–102 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Tadros, R. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat. Genet. 53, 128–134 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • MacCarrick, G. et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet. Med. 16, 576–587 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loeys, B. & De Paepe, A. New insights in the pathogenesis of aortic aneurysms. Verh. K. Acad. Geneeskd. Belg. 70, 69–84 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Gallo, E. M. et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J. Clin. Invest 124, 448–460 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duan, C. & Xu, Q. Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. Gen. Comp. Endocrinol. 142, 44–52 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • von der Thusen, J. H. et al. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype. Am. J. Pathol. 178, 924–934 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lei, Y. et al. Metformin targets multiple signaling pathways in cancer. Chin. J. Cancer 36, 17 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fujimura, N. et al. Metformin treatment status and abdominal aortic aneurysm disease progression. J. Vasc. Surg. 64, 46–54 e48 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lareyre, F. & Raffort, J. Metformin to limit abdominal aortic aneurysm expansion: time for clinical trials. Eur. J. Vasc. Endovasc. Surg. 61, 1030 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Lopes-Ramos, C. M. et al. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 31, 107795 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nethononda, R. M. et al. Gender specific patterns of age-related decline in aortic stiffness: a cardiovascular magnetic resonance study including normal ranges. J. Cardiovasc. Magn. Reson. 17, 20 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davis, E. C. Elastic lamina growth in the developing mouse aorta. J. Histochem. Cytochem. 43, 1115–1123 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wahart, A. et al. Role of elastin peptides and elastin receptor complex in metabolic and cardiovascular diseases. FEBS J. https://doi.org/10.1111/febs.14836 (2019).

  • Urban, Z. et al. Connection between elastin haploinsufficiency and increased cell proliferation in patients with supravalvular aortic stenosis and Williams-Beuren syndrome. Am. J. Hum. Genet. 71, 30–44 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Papke, C. L. & Yanagisawa, H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol. 37, 142–149 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nead, K. T. et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Hum. Mol. Genet. 24, 3582–3594 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Consortium, C. A. D. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Baxter, B. T. et al. Abdominal aortic aneurysms are associated with altered matrix proteins of the nonaneurysmal aortic segments. J. Vasc. Surg. 19, 797–802 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • International Consortium for Blood Pressure Genome-Wide Association, S. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • O’Rourke, M. F. & Safar, M. E. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46, 200–204 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lacolley, P., Regnault, V., Segers, P. & Laurent, S. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol. Rev. 97, 1555–1617 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jefferson, A. L. et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation 138, 1951–1962 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coronary Artery Disease Genetics, C. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339–344 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Beaudoin, M. et al. Myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries. Arterioscler. Thromb. Vasc. Biol. 35, 1472–1479 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anttila, V. et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 45, 912–917 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kiando, S. R. et al. PHACTR1 is a genetic susceptibility locus for fibromuscular dysplasia supporting its complex genetic pattern of inheritance. PLoS Genet. 12, e1006367 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Debette, S. et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat. Genet. 47, 78–83 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Munafo, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider scope: when selection bias can substantially influence observed associations. Int J. Epidemiol. 47, 226–235 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Petersen, S. E. et al. UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson 18, 8 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalra, G. et al. Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. PLoS Genet. 16, e1009025 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Altman, D. G. & Bland, J. M. Interaction revisited: the difference between two estimates. BMJ 326, 219 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5, 2122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burgess, S., Foley, C. N., Allara, E., Staley, J. R. & Howson, J. M. M. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat. Commun. 11, 376 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355 (2017).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar
     

  • Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int J. Epidemiol. 47, 1264–1278 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J. Epidemiol. 44, 512–525 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanderson, E., Spiller, W. & Bowden, J. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat. Med. 40, 5434–5452 (2021).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar
     

  • Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J. Epidemiol. 48, 713–727 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Wu, P. et al. Mapping ICD-10 and ICD-10-CM codes to phecodes: workflow development and initial evaluation. JMIR Med. Inf. 7, e14325 (2019).

    Article 

    Google Scholar
     

  • Shi, H., Mancuso, N., Spendlove, S. & Pasaniuc, B. Local genetic correlation gives insights into the shared genetic architecture of complex traits. Am. J. Hum. Genet. 101, 737–751 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics 32, 283–285 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Lohner, V. et al. Incidental findings on 3 T neuroimaging: cross-sectional observations from the population-based Rhineland Study. Neuroradiology 64, 503–512 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Kamnitsas, K. et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coors, A. et al. Polygenic risk scores for schizophrenia are associated with oculomotor endophenotypes. Psychol. Med. 1–9, (2021).



  • Source link

    EHS
    Back to top button