Header
Header
Article

Epstein–Barr virus and multiple sclerosis


  • Young, L. S. & Rickinson, A. B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Young, L. S., Yap, L. F. & Murray, P. G. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wong, Y., Meehan, M. T., Burrows, S. R., Doolan, D. L. & Miles, J. J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. https://doi.org/10.1007/s00432-021-03824-y (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon-Lowe, C. & Rickinson, A. The global landscape of EBV-associated tumors. Front. Oncol. 9, 713 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dunmire, S. K., Verghese, P. S. & Balfour, H. H. Jr. Primary Epstein-Barr virus infection. J. Clin. Virol. 102, 84–92 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Fournier, B. & Latour, S. Immunity to EBV as revealed by immunedeficiencies. Curr. Opin. Immunol. 72, 107–115 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ascherio, A. & Munger, K. L. Epidemiology of multiple sclerosis: from risk factors to prevention-an update. Semin. Neurol. 36, 103–114 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Laderach, F. & Munz, C. Epstein Barr virus exploits genetic susceptibility to increase multiple sclerosis risk. Microorganisms https://doi.org/10.3390/microorganisms9112191 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alroughani, R. & Boyko, A. Pediatric multiple sclerosis: a review. BMC Neurol. 18, 27 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rodgers, M. M. et al. Gait characteristics of individuals with multiple sclerosis before and after a 6-month aerobic training program. J. Rehabil. Res. Dev. 36, 183–188 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Confavreux, C. & Vukusic, S. The clinical course of multiple sclerosis. Handb. Clin. Neurol. 122, 343–369 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soldan, S. S. & Jacobson, S. in Neurotropic Viral Infections (ed. Reiss, C.) 175–220 (Springer, 2016).

  • Ruprecht, K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev. Clin. Immunol. 16, 1143–1157 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bar-Or, A., Banwell, B., Berger, J. R. & Lieberman, P. M. Guilty by association: Epstein-Barr virus in multiple sclerosis. Nat. Med. 28, 904–906 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Baer, R. et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207–211 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanda, T., Yajima, M. & Ikuta, K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 110, 1132–1139 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thorley-Lawson, D. A. EBV persistence–introducing the virus. Curr. Top. Microbiol. Immunol. 390, 151–209 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrell, P. J. Epstein-Barr virus strain variation. Curr. Top. Microbiol. Immunol. 390, 45–69 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Santpere, G. et al. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1000 Genomes Project. Genome Biol. Evol. 6, 846–860 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lay, M. L. et al. Epstein-Barr virus genotypes and strains in central nervous system demyelinating disease and Epstein-Barr virus-related illnesses in Australia. Intervirology 55, 372–379 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Brennan, R. M. et al. Strains of Epstein-Barr virus infecting multiple sclerosis patients. Mult. Scler. 16, 643–651 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de-Thé, G. et al. Sero-epidemiology of the Epstein-Barr virus: preliminary analysis of an international study- a review 3–16 (IARC Science Publications, 1975).

  • Balfour, H. H. Jr. et al. Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6-19 years in the United States and factors affecting its acquisition. J. Infect. Dis. 208, 1286–1293 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Chandran, B. & Hutt-Fletcher, L. in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (eds Arvin, A. et al.) (Cambridge Univ. Press, 2007).

  • Thorley-Lawson, D. A. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thompson, M. P. & Kurzrock, R. Epstein-Barr virus and cancer. Clin. Cancer Res. 10, 803–821 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hassani, A., Corboy, J. R., Al-Salam, S. & Khan, G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS ONE 13, e0192109 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gianella, S. et al. Effect of cytomegalovirus and Epstein-Barr virus replication on intestinal mucosal gene expression and microbiome composition of HIV-infected and uninfected individuals. AIDS 31, 2059–2067 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Speck, P., Haan, K. M. & Longnecker, R. Epstein-Barr virus entry into cells. Virology 277, 1–5 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao, J., Palefsky, J. M., Herrera, R. & Tugizov, S. M. Characterization of the Epstein-Barr virus glycoprotein BMRF-2. Virology 359, 382–396 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao, J., Palefsky, J. M., Herrera, R., Berline, J. & Tugizov, S. M. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology 388, 335–343 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, H. et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat. Microbiol. 3, 1–8 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Stubbins, R. J. et al. Epstein-Barr virus associated smooth muscle tumors in solid organ transplant recipients: incidence over 31 years at a single institution and review of the literature. Transpl. Infect. Dis. 21, e13010 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Kimura, H. & Cohen, J. I. Chronic active Epstein-Barr virus disease. Front. Immunol. 8, 1867 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jha, H. C. et al. Gammaherpesvirus infection of human neuronal cells. mBio 6, e01844–e01815 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Menet, A. et al. Epstein-Barr virus infection of human astrocyte cell lines. J. Virol. 73, 7722–7733 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanda, T. EBV-encoded latent genes. Adv. Exp. Med. Biol. 1045, 377–394 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kieff, E. & Rickinson, A. B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2603–2654 (Lippincott Williams and Wilkins, 2007).

  • Shinozaki-Ushiku, A., Kunita, A. & Fukayama, M. Update on Epstein-Barr virus and gastric cancer (review). Int. J. Oncol. 46, 1421–1434 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Greenspan, J. S., Greenspan, D. & Webster-Cyriaque, J. Hairy leukoplakia; lessons learned: 30-plus years. Oral Dis. 22, 120–127 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Murata, T. et al. Molecular basis of Epstein-Barr virus latency establishment and lytic reactivation. Viruses https://doi.org/10.3390/v13122344 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenzie, J. & El-Guindy, A. Epstein-Barr virus lytic cycle reactivation. Curr. Top. Microbiol. Immunol. 391, 237–261 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Chan, C. K. et al. Epstein-Barr virus antibody patterns preceding the diagnosis of nasopharyngeal carcinoma. Cancer Causes Control. 2, 125–131 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mueller, N. et al. Epstein-Barr virus antibody patterns preceding the diagnosis of non-Hodgkin’s lymphoma. Int. J. Cancer 49, 387–393 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu, F. et al. Defective Epstein-Barr virus genomes and atypical viral gene expression in B-cell lines derived from multiple myeloma patients. J. Virol. 95, e0008821 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Rosemarie, Q. & Sugden, B. Epstein-Barr virus: how its lytic phase contributes to oncogenesis. Microorganisms https://doi.org/10.3390/microorganisms8111824 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maple, P. A. C., Gran, B., Tanasescu, R., Pritchard, D. I. & Constantinescu, C. S. An absence of Epstein-Barr virus reactivation and associations with disease activity in people with multiple sclerosis undergoing therapeutic hookworm vaccination. Vaccines https://doi.org/10.3390/vaccines8030487 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torkildsen, O., Nyland, H., Myrmel, H. & Myhr, K. M. Epstein-Barr virus reactivation and multiple sclerosis. Eur. J. Neurol. 15, 106–108 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Yea, C. et al. Epstein-Barr virus in oral shedding of children with multiple sclerosis. Neurology 81, 1392–1399 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soldan, S. S. & Lieberman, P. M. Epstein-Barr virus infection in the development of neurological disorders. Drug Discov. Today Dis. Model. 32, 35–52 (2020).

    Article 

    Google Scholar
     

  • Munz, C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat. Rev. Microbiol. 17, 691–700 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leen, A. et al. Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4+ T-helper 1 responses. J. Virol. 75, 8649–8659 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bickham, K. et al. EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J. Clin. Invest. 107, 121–130 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Munz, C. et al. Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J. Exp. Med. 191, 1649–1660 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Azzi, T. et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 124, 2533–2543 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dunmire, S. K., Grimm, J. M., Schmeling, D. O., Balfour, H. H. Jr & Hogquist, K. A. The incubation period of primary Epstein-Barr virus infection: viral dynamics and immunologic events. PLoS Pathog. 11, e1005286 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Williams, H. et al. The immune response to primary EBV infection: a role for natural killer cells. Br. J. Haematol. 129, 266–274 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Strowig, T. et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med. 206, 1423–1434 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chijioke, O. et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep. 5, 1489–1498 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumwalde, N. A. et al. Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model. JCI Insight https://doi.org/10.1172/jci.insight.93179 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lino, C. N. R. & Ghosh, S. Epstein-Barr virus in inborn immunodeficiency-more than infection. Cancers https://doi.org/10.3390/cancers13194752 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, J. I. Primary immunodeficiencies associated with EBV disease. Curr. Top. Microbiol. Immunol. 390, 241–265 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo, S. et al. EBV-EBNA1 constructs an immunosuppressive microenvironment for nasopharyngeal carcinoma by promoting the chemoattraction of Treg cells. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001588 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westhoff Smith, D., Chakravorty, A., Hayes, M., Hammerschmidt, W. & Sugden, B. The Epstein-Barr virus oncogene EBNA1 suppresses natural killer cell responses and apoptosis early after infection of peripheral B cells. mBio 12, e0224321 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Keane, J. T. et al. The interaction of Epstein-Barr virus encoded transcription factor EBNA2 with multiple sclerosis risk loci is dependent on the risk genotype. EBioMedicine 71, 103572 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spender, L. C. et al. Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J. Gen. Virol. 87, 2859–2867 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pages, F. et al. Epstein-Barr virus nuclear antigen 2 induces interleukin-18 receptor expression in B cells. Blood 105, 1632–1639 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anastasiadou, E. et al. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 33, 132–147 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yanagi, Y. et al. RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology 557, 44–54 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanda, K. et al. The EBNA2-related resistance towards alpha interferon (IFN-alpha) in Burkitt’s lymphoma cells effects induction of IFN-induced genes but not the activation of transcription factor ISGF-3. Mol. Cell Biol. 12, 4930–4936 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, C. et al. EBNA2 driven enhancer switching at the CIITA-DEXI locus suppresses HLA class II gene expression during EBV infection of B-lymphocytes. PLoS Pathog. 17, e1009834 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jochum, S., Moosmann, A., Lang, S., Hammerschmidt, W. & Zeidler, R. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 8, e1002704 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bouvet, M. et al. Multiple viral microRNAs regulate interferon release and signaling early during infection with Epstein-Barr virus. mBio https://doi.org/10.1128/mBio.03440-20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murer, A. et al. MicroRNAs of Epstein-Barr virus attenuate T-cell-mediated immune control in vivo. mBio https://doi.org/10.1128/mBio.01941-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, N., Usuku, K. & Hauser, S. L. The T-cell response to myelin basic protein in familial multiple sclerosis: diversity of fine specificity, restricting elements, and T-cell receptor usage. Ann. Neurol. 34, 385–393 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martin, C. et al. Absence of seven human herpesviruses, including HHV-6, by polymerase chain reaction in CSF and blood from patients with multiple sclerosis and optic neuritis. Acta Neurol. Scand. 95, 280–283 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sindic, C. J., Monteyne, P. & Laterre, E. C. The intrathecal synthesis of virus-specific oligoclonal IgG in multiple sclerosis. J. Neuroimmunol. 54, 75–80 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sriram, S. et al. Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann. Neurol. 46, 6–14 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Virtanen, J. O., Wohler, J., Fenton, K., Reich, D. S. & Jacobson, S. Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings. Mult. Scler. 20, 27–34 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Franciotta, D. et al. Cerebrospinal BAFF and Epstein-Barr virus-specific oligoclonal bands in multiple sclerosis and other inflammatory demyelinating neurological diseases. J. Neuroimmunol. 230, 160–163 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Antibodies from multiple sclerosis brain identified Epstein-Barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands. J. Neuroimmune Pharmacol. 16, 567–580 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • van Nierop, G. P., Mautner, J., Mitterreiter, J. G., Hintzen, R. Q. & Verjans, G. M. Intrathecal CD8 T-cells of multiple sclerosis patients recognize lytic Epstein-Barr virus proteins. Mult. Scler. 22, 279–291 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis – from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015).

    PubMed 

    Google Scholar
     

  • Panitch, H. S., Hirsch, R. L., Schindler, J. & Johnson, K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng, X. et al. Low expression of interferon-stimulated genes in active multiple sclerosis is linked to subnormal phosphorylation of STAT1. J. Neuroimmunol. 129, 205–215 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a028936 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett, M. H. & Prineas, J. W. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Salou, M., Nicol, B., Garcia, A. & Laplaud, D. A. Involvement of CD8+ T cells in multiple sclerosis. Front. Immunol. 6, 604 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Salou, M. et al. Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann. Clin. Transl. Neurol. 2, 609–622 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cagol, A. et al. Association of brain atrophy with disease progression independent of relapse activity in patients with relapsing multiple sclerosis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2022.1025 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W. & Patsopoulos, N. A. Genetics and functional genomics of multiple sclerosis. Semin. Immunopathol. 4, 63–79 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Yuan, S., Xiong, Y. & Larsson, S. C. An atlas on risk factors for multiple sclerosis: a Mendelian randomization study. J. Neurol. 268, 114–124 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jersild, C., Dupont, B., Fog, T., Platz, P. J. & Svejgaard, A. Histocompatibility determinants in multiple sclerosis. Transplant. Rev. 22, 148–163 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Cook, S. D. Multiple sclerosis and viruses. Mult. Scler. 3, 388–389 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Australia & New Zealand Multiple Sclerosis Genetics Consortium. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41, 824–828 (2009).

    Article 
    CAS 

    Google Scholar
     

  • De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41, 776–782 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • International Multiple Sclerosis Genetics Consortium. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862 (2007).

    Article 

    Google Scholar
     

  • Cree, B. A. Multiple sclerosis genetics. Handb. Clin. Neurol. 122, 193–209 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Lin, X., Deng, F. Y., Lu, X. & Lei, S. F. Susceptibility genes for multiple sclerosis identified in a gene-based genome-wide association study. J. Clin. Neurol. (2015).

  • He, B., Yang, B., Lundahl, J., Fredrikson, S. & Hillert, J. The myelin basic protein gene in multiple sclerosis: identification of discrete alleles of a 1.3 kb tetranucleotide repeat sequence. Acta Neurol. Scand. 97, 46–51 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kellar-Wood, H., Robertson, N., Govan, G. G., Compston, D. A. & Harding, A. E. Leber’s hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann. Neurol. 36, 109–112 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reynier, P. et al. mtDNA haplogroup J: a contributing factor of optic neuritis. Eur. J. Hum. Genet. 7, 404–406 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thompson, R. J. et al. Analysis of polymorphisms of the 2’,3’-cyclic nucleotide-3’-phosphodiesterase gene in patients with multiple sclerosis. Mult. Scler. 2, 215–221 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sollid, L. M. Epstein-Barr virus as a driver of multiple sclerosis. Sci. Immunol. 7, eabo7799 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lunemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 205, 1763–1773 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tengvall, K. et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Sechel, A. C. et al. EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J. Immunol. 162, 129–135 (1999).

    PubMed 

    Google Scholar
     

  • Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4(+) T cells in multiple sclerosis. Cell 175, 85–100 e123 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nociti, V. et al. Epstein-Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J. Neuroimmunol. 225, 149–152 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ascherio, A., Munger, K. L. & Lunemann, J. D. The initiation and prevention of multiple sclerosis. Nat. Rev. Neurol. 8, 602–612 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lunemann, J. D. & Ascherio, A. Immune responses to EBNA1: biomarkers in MS. Neurology 73, 13–14 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Mescheriakova, J. Y., van Nierop, G. P., van der Eijk, A. A., Kreft, K. L. & Hintzen, R. Q. EBNA-1 titer gradient in families with multiple sclerosis indicates a genetic contribution. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000872 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hedström, A. K. et al. High levels of Epstein-Barr virus nuclear antigen-1-specific antibodies and infectious mononucleosis act both independently and synergistically to increase multiple sclerosis risk. Front. Neurol. 10, 1368 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • van Noort, J. M., Bajramovic, J. J., Plomp, A. C. & van Stipdonk, M. J. Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J. Neuroimmunol. 105, 46–57 (2000).

    PubMed 
    Article 

    Google Scholar
     

  • Hecker, M. et al. High-density peptide microarray analysis of IgG autoantibody reactivities in serum and cerebrospinal fluid of multiple sclerosis patients. Mol. Cell Proteom. 15, 1360–1380 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Capone, G. et al. Peptide matching between Epstein-Barr virus and human proteins. Pathog. Dis. 69, 205–212 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meier, U. C., Cipian, R. C., Karimi, A., Ramasamy, R. & Middeldorp, J. M. Cumulative roles for Epstein-Barr virus, human endogenous retroviruses, and human herpes virus-6 in driving an inflammatory cascade underlying MS pathogenesis. Front. Immunol. 12, 757302 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dantuma, N. P., Sharipo, A. & Masucci, M. G. Avoiding proteasomal processing: the case of EBNA1. Curr. Top. Microbiol. Immunol. 269, 23–36 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA 94, 12616–12621 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685–688 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tovar Fernandez, M. C. et al. Substrate-specific presentation of MHC class I-restricted antigens via autophagy pathway. Cell Immunol. 374, 104484 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Apcher, S., Daskalogianni, C., Manoury, B. & Fahraeus, R. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 6, e1001151 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tellam, J. T. et al. mRNA Structural constraints on EBNA1 synthesis impact on in vivo antigen presentation and early priming of CD8+ T cells. PLoS Pathog. 10, e1004423 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Murat, P. et al. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 10, 358–364 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tellam, J. T., Lekieffre, L., Zhong, J., Lynn, D. J. & Khanna, R. Messenger RNA sequence rather than protein sequence determines the level of self-synthesis and antigen presentation of the EBV-encoded antigen, EBNA1. PLoS Pathog. 8, e1003112 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pender, M. P. The essential role of Epstein-Barr virus in the pathogenesis of multiple sclerosis. Neuroscientist 17, 351–367 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Melchers, F. & Rolink, A. R. B cell tolerance–how to make it and how to break it. Curr. Top. Microbiol. Immunol. 305, 1–23 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Weniger, M. A. & Kuppers, R. Molecular biology of Hodgkin lymphoma. Leukemia 35, 968–981 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sommermann, T. et al. Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc. Natl Acad. Sci. USA 117, 14421–14432 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laurence, M. & Benito-Leon, J. Epstein-Barr virus and multiple sclerosis: updating Pender’s hypothesis. Mult. Scler. Relat. Disord. 16, 8–14 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Choi, I. K. et al. Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature 590, 157–162 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deng, Y. et al. CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion. Blood 137, 3225–3236 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Veroni, C., Serafini, B., Rosicarelli, B., Fagnani, C. & Aloisi, F. Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J. Neuroinflamm. 15, 18 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Magliozzi, R. et al. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 72, 29–41 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serafini, B. et al. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J. Neuropathol. Exp. Neurol. 69, 677–693 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tzartos, J. S. et al. Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology 78, 15–23 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moreno, M. A. et al. Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurol. Neuroimmunol. Neuroinflamm 5, e466 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Serafini, B., Rosicarelli, B., Veroni, C., Mazzola, G. A. & Aloisi, F. Epstein-Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: clue for a virus-driven immunopathological mechanism. J. Virol. https://doi.org/10.1128/JVI.00980-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Recher, M. et al. Extralymphatic virus sanctuaries as a consequence of potent T-cell activation. Nat. Med. 13, 1316–1323 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hochberg, D. et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 78, 5194–5204 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Veroni, C. et al. Immune and Epstein-Barr virus gene expression in cerebrospinal fluid and peripheral blood mononuclear cells from patients with relapsing-remitting multiple sclerosis. J. Neuroinflamm. 12, 132 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kiriyama, T., Kataoka, H., Kasai, T., Nonomura, A. & Ueno, S. Negative association of Epstein-Barr virus or herpes simplex virus-1 with tumefactive central nervous system inflammatory demyelinating disease. J. Neurovirol. 16, 466–471 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Sargsyan, S. A. et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 74, 1127–1135 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Willis, S. N. et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peferoen, L. A. et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 133, e137 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Torkildsen, O. et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 20, 720–729 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lassmann, H., Niedobitek, G., Aloisi, F., Middeldorp, J. M. & NeuroproMiSe EBV Working Group. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue–report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 134, 2772–2786 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hislop, A. D. & Taylor, G. S. T-cell responses to EBV. Curr. Top. Microbiol. Immunol. 391, 325–353 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25, 587–617 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Munger, K. L., Levin, L. I., O’Reilly, E. J., Falk, K. I. & Ascherio, A. Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult. Scler. 17, 1185–1193 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Levin, L. I. et al. Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293, 2496–2500 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lunemann, J. D. et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129, 1493–1506 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • International Multiple Sclerosis Genetics Consortium. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jilek, S. et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131, 1712–1721 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Angelini, D. F. et al. Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog. 9, e1003220 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. Deficiency of CD8+ effector memory T cells is an early and persistent feature of multiple sclerosis. Mult. Scler. 20, 1825–1832 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. Decreased CD8+ T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes. BMC Neurol. 11, 95 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. CD8 T cell deficiency impairs control of Epstein–Barr virus and worsens with age in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 353–354 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Veroni, C. & Aloisi, F. The CD8 T cell-Epstein-Barr virus-B cell trialogue: a central issue in multiple sclerosis pathogenesis. Front. Immunol. 12, 665718 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Langelaar, J. et al. The association of Epstein-Barr virus infection with CXCR3+ B-cell development in multiple sclerosis: impact of immunotherapies. Eur. J. Immunol. 51, 626–633 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Baglio, S. R. et al. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA. Proc. Natl Acad. Sci. USA 113, E587–E596 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Afrasiabi, A. et al. The interaction of human and Epstein-Barr virus miRNAs with multiple sclerosis risk loci. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22062927 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. C. et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell. Mol. Bioeng. 9, 509–529 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang, S. et al. The Epstein-Barr virus regulome in lymphoblastoid cells. Cell Host Microbe 22, 561–573.e4 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hong, T. et al. Epstein-Barr virus nuclear antigen 2 extensively rewires the human chromatin landscape at autoimmune risk loci. Genome Res. https://doi.org/10.1101/gr.264705.120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afrasiabi, A. et al. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility. Genome Med. 11, 26 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ricigliano, V. A. et al. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS ONE 10, e0119605 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mechelli, R. et al. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology 84, 1362–1368 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, Y. et al. Utilising multi-large omics data to elucidate biological mechanisms within multiple sclerosis genetic susceptibility loci. Mult. Scler. 27, 2141–2149 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ruhrmann, S., Stridh, P., Kular, L. & Jagodic, M. Genomic imprinting: a missing piece of the multiple sclerosis puzzle? Int. J. Biochem. Cell Biol. 67, 49–57 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kular, L. & Jagodic, M. Epigenetic insights into multiple sclerosis disease progression. J. Intern. Med. 288, 82–102 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kular, L. et al. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat. Commun. 9, 2397 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • He, Y., Huang, L., Tang, Y., Yang, Z. & Han, Z. Genome-wide identification and analysis of splicing QTLs in multiple sclerosis by RNA-seq data. Front. Genet. 12, 769804 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wanke, F. et al. EBI2 is highly expressed in multiple sclerosis lesions and promotes early CNS migration of encephalitogenic CD4 T cells. Cell Rep. 18, 1270–1284 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo, R. & Gewurz, B. E. Epigenetic control of the Epstein-Barr lifecycle. Curr. Opin. Virol. 52, 78–88 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tempera, I. & Lieberman, P. M. Epigenetic regulation of EBV persistence and oncogenesis. Semin. Cancer Biol. 26, 22–29 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kucukali, C. I., Kurtuncu, M., Coban, A., Cebi, M. & Tuzun, E. Epigenetics of multiple sclerosis: an updated review. Neuromol. Med. 17, 83–96 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Soldan, S. S. et al. Epigenetic plasticity enables CNS-trafficking of EBV-infected B lymphocytes. PLoS Pathog. 17, e1009618 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Greer, J. M. et al. Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J. Immunol. 156, 371–379 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Zdimerova, H. et al. Attenuated immune control of Epstein-Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15. Eur. J. Immunol. 51, 64–75 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Agostini, S. et al. HLA alleles modulate EBV viral load in multiple sclerosis. J. Transl. Med. 16, 80 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wandinger, K. et al. Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55, 178–184 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cocuzza, C. E. et al. Quantitative detection of Epstein-Barr virus DNA in cerebrospinal fluid and blood samples of patients with relapsing-remitting multiple sclerosis. PLoS ONE 9, e94497 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lindsey, J. W., Hatfield, L. M., Crawford, M. P. & Patel, S. Quantitative PCR for Epstein-Barr virus DNA and RNA in multiple sclerosis. Mult. Scler. 15, 153–158 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buljevac, D. et al. Epstein-Barr virus and disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76, 1377–1381 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hollenbach, J. A. & Oksenberg, J. R. The immunogenetics of multiple sclerosis: a comprehensive review. J. Autoimmun. 64, 13–25 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Enz, L. S. et al. Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000656 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, R., Sospedra, M., Eiermann, T. & Olsson, T. Multiple sclerosis: doubling down on MHC. Trends Genet. 37, 784–797 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Menegatti, J., Schub, D., Schafer, M., Grasser, F. A. & Ruprecht, K. HLA-DRB1*15:01 is a co-receptor for Epstein-Barr virus, linking genetic and environmental risk factors for multiple sclerosis. Eur. J. Immunol. 51, 2348–2350 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Burnham, J. A., Wright, R. R., Dreisbach, J. & Murray, R. S. The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41, 1349–1354 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baker, D., Marta, M., Pryce, G., Giovannoni, G. & Schmierer, K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16, 41–50 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ceronie, B. et al. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J. Neurol. 265, 1199–1209 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kappos, L. et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Segal, B. M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kappos, L. et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 13, 353–363 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bilger, A. et al. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication. Oncotarget 8, 44266–44280 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Doubrovina, E. et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119, 2644–2656 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heslop, H. E. et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115, 925–935 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Savoldo, B. et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 108, 2942–2949 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pender, M. P. et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult. Scler. 20, 1541–1544 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pender, M. P. et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight https://doi.org/10.1172/jci.insight.124714 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pender, M. P. et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight https://doi.org/10.1172/jci.insight.144624 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pender, M. P., Csurhes, P. A., Burrows, J. M. & Burrows, S. R. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin. Transl. Immunol. 6, e126 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bar-Or, A. et al. Updated open-label extension clinical data and new magnetization transfer ratio imaging data from a phase I study of ATA188, an off-the-shelf, allogeneic Epstein-Barr virus-targeted T-cell immunotherapy for progressive multiple sclerosis [ECTRIMS 2021 poster]. Multiple Sclerosis J. 27 (2_suppl.), P638 (2021).


    Google Scholar
     

  • Lycke, J. et al. Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J. Neurol. 243, 214–224 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bech, E. et al. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology 58, 31–36 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Friedman, J. E. et al. A randomized clinical trial of valacyclovir in multiple sclerosis. Mult. Scler. 11, 286–295 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Annibali, V. et al. IFN-beta and multiple sclerosis: from etiology to therapy and back. Cytokine Growth Factor. Rev. 26, 221–228 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bentz, G. L., Liu, R., Hahn, A. M., Shackelford, J. & Pagano, J. S. Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-beta. Virology 402, 121–128 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hahn, A. M., Huye, L. E., Ning, S., Webster-Cyriaque, J. & Pagano, J. S. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J. Virol. 79, 10040–10052 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Clercq, E. Potential of acyclic nucleoside phosphonates in the treatment of DNA virus and retrovirus infections. Expert Rev. Anti Infect. Ther. 1, 21–43 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Drosu, N. C., Edelman, E. R. & Housman, D. E. Tenofovir prodrugs potently inhibit Epstein-Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proc. Natl Acad. Sci. USA 117, 12368–12374 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torkildsen, O., Myhr, K. M., Skogen, V., Steffensen, L. H. & Bjornevik, K. Tenofovir as a treatment option for multiple sclerosis. Mult. Scler. Relat. Disord. 46, 102569 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Elliott, S. L. et al. Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis. J. Virol. 82, 1448–1457 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Moutschen, M. et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine healthy adults. Vaccine 25, 4697–4705 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Sheik-Ali, S. Infectious mononucleosis and multiple sclerosis – updated review on associated risk. Mult. Scler. Relat. Disord. 14, 56–59 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Dirmeier, U. et al. Latent membrane protein 1 of Epstein-Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 24, 1711–1717 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hussain, M., Gatherer, D. & Wilson, J. B. Modelling the structure of full-length Epstein-Barr virus nuclear antigen 1. Virus Genes 49, 358–372 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Back to top button