EHS
EHS

Protective and anti-oxidative effects of curcumin and resveratrol on Aβ-oligomer-induced damage in the SH-SY5Y cell line


    • Mangialasche F.
    • Solomon A.
    • Winblad B.
    • Mecocci P.
    • Kivipelto M.

    Alzheimer’s disease: clinical trials and drug development.

    Lancet Neurol. 2010; 9: 702-716

  • Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction.

    Cold Spring Harb Perspect Med. 2012; 2a006338

  • The case for rejecting the amyloid cascade hypothesis.

    Nat. Neurosci. 2015; 18: 794-799

  • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.

    Nature. 2006; 443: 787-795

  • Oxidative stress, synaptic dysfunction, and Alzheimer’s disease.

    J. Alzheimers Dis. 2017; 57: 1105-1121

    • Amalraj A.
    • Pius A.
    • Gopi S.
    • Gopi S.

    Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review.

    J. Tradit. Complement. Med. 2017; 7: 205-233

  • Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects.

    Molecules. 2019; 24

    • Ono K.
    • Hasegawa K.
    • Naiki H.
    • Yamada M.

    Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro.

    J. Neurosci. Res. 2004; 75: 742-750

    • Lim G.P.
    • Chu T.
    • Yang F.
    • Beech W.
    • Frautschy S.A.
    • Cole G.M.

    The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.

    J. Neurosci. 2001; 21: 8370-8377

    • Mithu V.S.
    • Sarkar B.
    • Bhowmik D.
    • Das A.K.
    • Chandrakesan M.
    • Maiti S.
    • Madhu P.K.

    Curcumin alters the salt bridge-containing turn region in amyloid beta(1-42) aggregates.

    J. Biol. Chem. 2014; 289: 11122-11131

    • Wei Q.Y.
    • Chen W.F.
    • Zhou B.
    • Yang L.
    • Liu Z.L.

    Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues.

    Biochim. Biophys. Acta. 2006; 1760: 70-77

  • Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin.

    J. Phys. Chem. A. 2011; 115: 14221-14232

  • Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.

    Eur. J. Med. Chem. 2016; 121: 510-516

  • Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models.

    J. Alzheimers Dis. 2004; 6 : 367-377

    • Nishinaka T.
    • Ichijo Y.
    • Ito M.
    • Kimura M.
    • Katsuyama M.
    • Iwata K.
    • Miura T.
    • Terada T.
    • Yabe-Nishimura C.

    Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element.

    Toxicol. Lett. 2007; 170: 238-247

  • Effect of curcumin on the metal ion induced fibrillization of amyloid-beta peptide.

    Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014; 117: 798-800

    • Ma T.
    • Tan M.S.
    • Yu J.T.
    • Tan L.

    Resveratrol as a therapeutic agent for Alzheimer’s disease.

    Biomed. Res. Int. 2014; 2014350516

    • Marambaud P.
    • Zhao H.
    • Davies P.

    Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides.

    J. Biol. Chem. 2005; 280: 37377-37382

    • Bastianetto S.
    • Menard C.
    • Quirion R.

    Neuroprotective action of resveratrol.

    Biochim. Biophys. Acta. 2015; 1852: 1195-1201

    • Richard T.
    • Poupard P.
    • Nassra M.
    • Papastamoulis Y.
    • Iglesias M.L.
    • Krisa S.
    • Waffo-Teguo P.
    • Merillon J.M.
    • Monti J.P.

    Protective effect of epsilon-viniferin on beta-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry.

    Bioorg. Med. Chem. 2011; 19: 3152-3155

    • Zhuang H.
    • Kim Y.S.
    • Koehler R.C.
    • Dore S.

    Potential mechanism by which resveratrol, a red wine constituent, protects neurons.

    Ann. N Y Acad. Sci. 993. 2003; (): 276-286

    • Candelario-Jalil E.
    • de Oliveira A.C.
    • Graf S.
    • Bhatia H.S.
    • Hull M.
    • Munoz E.
    • Fiebich B.L.

    Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia.

    J. Neuroinflammation. 2007; 4: 25

  • Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death.

    Free Radic. Biol. Med. 2003; 34: 1100-1110

    • Koukoulitsa C.
    • Villalonga-Barber C.
    • Csonka R.
    • Alexi X.
    • Leonis G.
    • Dellis D.
    • Hamelink E.
    • Belda O.
    • Steele B.R.
    • Micha-Screttas M.
    • Alexis M.N.
    • Papadopoulos M.G.
    • Mavromoustakos T.

    Biological and computational evaluation of resveratrol inhibitors against Alzheimer’s disease.

    J. Enzyme Inhib. Med. Chem. 2016; 31: 67-77

  • Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury.

    Eur. J. Pharmacol. 2004; 489: 39-48

  • Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress.

    Brain Res. 2018; 1692: 45-55

  • Naturally occurring phytochemicals for the prevention of Alzheimer’s disease.

    J. Neurochem. 2010; 112: 1415-1430

  • Edaravone: a new drug approved for ALS.

    Cell. 2017; 171: 725

    • Zhang L.
    • Guo Y.
    • Wang H.
    • Zhao L.
    • Ma Z.
    • Li T.
    • Liu J.
    • Sun M.
    • Jian Y.
    • Yao L.
    • Du Y.
    • Zhang G.

    Edaravone reduces Abeta-induced oxidative damage in SH-SY5Y cells by activating the Nrf2/ARE signaling pathway.

    Life Sci. 2019; 221: 259-266

    • Kikuchi K.
    • Tancharoen S.
    • Takeshige N.
    • Yoshitomi M.
    • Morioka M.
    • Murai Y.
    • Tanaka E.

    The efficacy of edaravone (radicut), a free radical scavenger, for cardiovascular disease.

    Int. J. Mol. Sci. 2013; 14: 13909-13930

    • Jiao S.S.
    • Yao X.Q.
    • Liu Y.H.
    • Wang Q.H.
    • Zeng F.
    • Lu J.J.
    • Liu J.
    • Zhu C.
    • Shen L.L.
    • Liu C.H.
    • Wang Y.R.
    • Zeng G.H.
    • Parikh A.
    • Chen J.
    • Liang C.R.
    • Xiang Y.
    • Bu X.L.
    • Deng J.
    • Li J.
    • Xu J.
    • Zeng Y.Q.
    • Xu X.
    • Xu H.W.
    • Zhong J.H.
    • Zhou H.D.
    • Zhou X.F.
    • Wang Y.J.

    Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits.

    Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 5225-5230

    • Lambert M.P.
    • Barlow A.K.
    • Chromy B.A.
    • Edwards C.
    • Freed R.
    • Liosatos M.
    • Morgan T.E.
    • Rozovsky I.
    • Trommer B.
    • Viola K.L.
    • Wals P.
    • Zhang C.
    • Finch C.E.
    • Krafft G.A.
    • Klein W.L.

    Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins.

    Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 6448-6453

    • Chunhui H.
    • Dilin X.
    • Ke Z.
    • Jieyi S.
    • Sicheng Y.
    • Dapeng W.
    • Qinwen W.
    • C.

    Wei, A11-positive beta-amyloid oligomer preparation and assessment using dot blotting analysis.

    J. Vis. Exp. 2018; 135

    • Kovalevich J.
    • Langford D.

    Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology.

    Methods Mol. Biol. 2013; 1078: 9-21

    • Martinez M.A.
    • Rodriguez J.L.
    • Lopez-Torres B.
    • Martinez M.
    • Martinez-Larranaga M.R.
    • Maximiliano J.E.
    • Anadon A.
    • Ares I.

    Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways.

    Environ. Int. 2020; 135105414

    • Drummond N.J.
    • Davies N.O.
    • Lovett J.E.
    • Miller M.R.
    • Cook G.
    • Becker T.
    • Becker C.G.
    • McPhail D.B.
    • Kunath T.

    A synthetic cell permeable antioxidant protects neurons against acute oxidative stress.

    Sci. Rep. 2017; 7: 11857

    • Deshpande A.
    • Mina E.
    • Glabe C.
    • Busciglio J.

    Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons.

    J. Neurosci. 2006; 26: 6011-6018

  • Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets.

    Neurochem. Int. 2002; 41: 345-352

    • Katzmarski N.
    • Ziegler-Waldkirch S.
    • Scheffler N.
    • Witt C.
    • Abou-Ajram C.
    • Nuscher B.
    • Prinz M.
    • Haass C.
    • Meyer-Luehmann M.

    Abeta oligomers trigger and accelerate Abeta seeding.

    Brain Pathol. 2020; 30: 36-45

    • Swerdlow R.H.
    • Burns J.M.
    • Khan S.M.

    The Alzheimer’s disease mitochondrial cascade hypothesis.

    J. Alzheimers Dis. 2010; 20: S265-S279

    • Sarkar S.
    • Jun S.
    • Simpkins J.W.

    Estrogen amelioration of Abeta-induced defects in mitochondria is mediated by mitochondrial signaling pathway involving ERbeta, AKAP and Drp1.

    Brain Res. 2015; 1616: 101-111



  • Source link

    EHS
    Back to top button