Header
Header
Article

Using magnetic resonance imaging to improve diagnosis of peripheral vestibular disorders


    • Bisdorff A.
    • Von Brevern M.
    • Lempert T.
    • Newman-Toker D.E.

    Classification of vestibular symptoms: towards an international classification of vestibular disorders.

    J. Vestib. Res. 2009; 19: 1-13https://doi.org/10.3233/VES-2009-0343

    • Benson J.C.
    • Carlson M.L.
    • Lane J.I.

    MRI of the internal auditory canal, labyrinth, and middle ear: how we do it.

    Radiology. 2020; 297: 252-265https://doi.org/10.1148/radiol.2020201767

    • Minor L.B.
    • Solomon D.
    • Zinreich J.S.
    • Zee D.S.

    Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal.

    Arch. Otolaryngol. Neck Surg. 1998; 124: 249-258https://doi.org/10.1001/archotol.124.3.249

    • Merchant S.N.
    • Schuknecht H.F.

    Vestibular atelectasis.

    Ann. Otol. Rhinol. Laryngol. 1988; 97: 565-576https://doi.org/10.1177/000348948809700601

    • Wenzel A.
    • Ward B.K.
    • Schubert M.C.
    • Kheradmand A.
    • Zee D.S.
    • Mantokoudis G.
    • et al.

    Patients with vestibular loss, tullio phenomenon, and pressure-induced nystagmus: vestibular atelectasis?.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2014; 35: 866-872https://doi.org/10.1097/MAO.0000000000000366

    • Eliezer M.
    • Attyé A.
    • Guichard J.-P.
    • Vitaux H.
    • Guillonnet A.
    • Toupet M.
    • et al.

    Vestibular atelectasis: myth or reality?.

    Laryngoscope. 2019; 129: 1689-1695https://doi.org/10.1002/lary.27793

    • Gupta R.
    • Cheung A.C.
    • Bartling S.H.
    • Lisauskas J.
    • Grasruck M.
    • Leidecker C.
    • et al.

    Flat-panel volume CT: fundamental principles, technology, and applications.

    RadioGraphics. 2008; 28: 2009-2022https://doi.org/10.1148/rg.287085004

  • Imaging of the temporal bone.

    Clin. Radiol. 2020; 75: 658-674https://doi.org/10.1016/j.crad.2020.06.013

    • Ho M.-L.
    • Moonis G.
    • Halpin C.F.
    • Curtin H.D.

    Spectrum of third window abnormalities: semicircular canal dehiscence and beyond.

    AJNR Am. J. Neuroradiol. 2017; 38: 2-9https://doi.org/10.3174/ajnr.A4922

    • Casselman J.W.
    • Offeciers E.F.
    • De Foer B.
    • Govaerts P.
    • Kuhweide R.
    • Somers T.

    CT and MR imaging of congential abnormalities of the inner ear and internal auditory canal.

    Eur. J. Radiol. 2001; 40: 94-104https://doi.org/10.1016/S0720-048X(01)00377-1

    • Ward B.K.
    • Roberts D.C.
    • Otero-Millan J.
    • Zee D.S.

    A decade of magnetic vestibular stimulation: from serendipity to physics to the clinic.

    J. Neurophysiol. 2019; 121: 2013-2019https://doi.org/10.1152/jn.00873.2018

    • Brink W.M.
    • van der Jagt A.M.A.
    • Versluis M.J.
    • Verbist B.M.
    • Webb A.G.

    High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T.

    Investig. Radiol. 2014; 49: 271-277https://doi.org/10.1097/RLI.0000000000000026

    • Roberts D.C.
    • Marcelli V.
    • Gillen J.S.
    • Carey J.P.
    • Santina C.C.D.
    • Zee D.S.

    MRI magnetic field stimulates rotational sensors of the brain.

    Curr. Biol. 2011; 21: 1635-1640https://doi.org/10.1016/j.cub.2011.08.029

    • Thormann M.
    • Amthauer H.
    • Adolf D.
    • Wollrab A.
    • Ricke J.
    • Speck O.

    Efficacy of diphenhydramine in the prevention of vertigo and nausea at 7T MRI.

    Eur. J. Radiol. 2013; 82: 768-772https://doi.org/10.1016/j.ejrad.2011.08.001

    • Jambawalikar S.
    • Liu M.Z.
    • Moonis G.

    Advanced MR imaging of the temporal bone.

    Neuroimaging Clin. N. Am. 2019; 29: 197-202https://doi.org/10.1016/j.nic.2018.09.009

    • Byun J.S.
    • Kim H.-J.
    • Yim Y.J.
    • Kim S.T.
    • Jeon P.
    • Kim K.H.
    • et al.

    MR imaging of the internal auditory canal and inner ear at 3T: comparison between 3D driven equilibrium and 3D balanced fast field Echo sequences.

    Korean J. Radiol. 2008; 9: 212-218https://doi.org/10.3348/kjr.2008.9.3.212

    • Dremmen M.H.G.
    • Hofman P.A.M.
    • Hof J.R.
    • Stokroos R.J.
    • Postma A.A.

    The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone.

    Am. J. Neuroradiol. 2012; 33: 439-444https://doi.org/10.3174/ajnr.A2824

  • A review on screening tests for vestibular disorders.

    J. Neurophysiol. 2019; 122: 81-92https://doi.org/10.1152/jn.00819.2018

  • Vestibular testing.

    Contin. Lifelong. Learn. Neurol. 2021; 27: 330https://doi.org/10.1212/CON.0000000000000978

  • Efficient use of vestibular testing.

    Otolaryngol. Clin. N. Am. 2021; 54: 875-891https://doi.org/10.1016/j.otc.2021.05.011

    • von Brevern M.
    • Radtke A.
    • Lezius F.
    • Feldmann M.
    • Ziese T.
    • Lempert T.
    • et al.

    Epidemiology of benign paroxysmal positional vertigo: a population based study.

    J. Neurol. Neurosurg. Psychiatry. 2007; 78: 710-715https://doi.org/10.1136/jnnp.2006.100420

  • The pathology, symptomatology and diagnosis of certain common disorders of the vestibular system.

    Ann. Otol. Rhinol. Laryngol. 1952; 61: 987-1016https://doi.org/10.1177/000348945206100403

    • Korres S.
    • Balatsouras D.G.
    • Kaberos A.
    • Economou C.
    • Kandiloros D.
    • Ferekidis E.

    Occurrence of semicircular canal involvement in benign paroxysmal positional vertigo.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2002; 23: 926-932https://doi.org/10.1097/00129492-200211000-00019

    • Parnes L.S.
    • Agrawal S.K.
    • Atlas J.

    Diagnosis and management of benign paroxysmal positional vertigo (BPPV).

    CMAJ Can. Med. Assoc. J. 2003; 169: 681-693

  • Epidemiological data from 2270 PPV patients.

    Audiol. Med. 2005; 3: 7-11https://doi.org/10.1080/16513860510028310

    • Baloh R.W.
    • Honrubia V.
    • Jacobson K.

    Benign positional vertigo: clinical and oculographic features in 240 cases.

    Neurology. 1987; 37: 371-378https://doi.org/10.1212/wnl.37.3.371

  • Benign paroxysmal positional vertigo (BPPV): idiopathic versus post-traumatic.

    Acta Otolaryngol. (Stockh.). 1999; 119: 745-749https://doi.org/10.1080/00016489950180360

    • Karlberg M.
    • Hall K.
    • Quickert N.
    • Hinson J.
    • Halmagyi G.M.

    What inner ear diseases cause benign paroxysmal positional vertigo?.

    Acta Otolaryngol. (Stockh.). 2000; 120: 380-385https://doi.org/10.1080/000164800750000603

    • Büki B.
    • Mandalà M.
    • Nuti D.

    Typical and atypical benign paroxysmal positional vertigo: literature review and new theoretical considerations.

    J. Vestib. Res. Equilib. Orientat. 2014; 24: 415-423https://doi.org/10.3233/VES-140535

    • Nuti D.
    • Masini M.
    • Mandalà M.

    Chapter 18 – Benign paroxysmal positional vertigo and its variants.

    in: Furman J.M. Lempert T. Handb. Clin. Neurol. vol. 137. Elsevier,
    2016: 241-256https://doi.org/10.1016/B978-0-444-63437-5.00018-2

    • von Brevern M.
    • Bertholon P.
    • Brandt T.
    • Fife T.
    • Imai T.
    • Nuti D.
    • et al.

    Benign paroxysmal positional vertigo: diagnostic criteria.

    J. Vestib. Res. Equilib. Orientat. 2015; 25: 105-117https://doi.org/10.3233/VES-150553

    • Bhattacharyya N.
    • Gubbels S.P.
    • Schwartz S.R.
    • Edlow J.A.
    • El-Kashlan H.
    • Fife T.
    • et al.

    Clinical practice guideline: benign paroxysmal positional vertigo (update).

    Otolaryngol. Neck Surg. 2017; 156: S1-47https://doi.org/10.1177/0194599816689667

    • Hall S.F.
    • Ruby R.R.
    • McClure J.A.

    The mechanics of benign paroxysmal vertigo.

    J. Otolaryngol. 1979; 8: 151-158

  • Cupulolithiasis.

    Arch. Otolaryngol. Chic. Ill. 1960; 1969: 765-778https://doi.org/10.1001/archotol.1969.00770030767020

  • Positional vertigo related to semicircular canalithiasis.

    Otolaryngol. Neck Surg. 1995; 112: 154-161https://doi.org/10.1016/S0194-59989570315-2

    • Lynn S.
    • Pool A.
    • Rose D.
    • Brey R.
    • Suman V.

    Randomized trial of the canalith repositioning procedure.

    Otolaryngol. Head Neck Surg. 1995; 113: 712-720https://doi.org/10.1016/S0194-5998(95)70010-2

    • Haynes D.S.
    • Resser J.R.
    • Labadie R.F.
    • Girasole C.R.
    • Kovach B.T.
    • Scheker L.E.
    • et al.

    Treatment of benign positional vertigo using the semont maneuver: efficacy in patients presenting without nystagmus.

    Laryngoscope. 2002; 112: 796-801https://doi.org/10.1097/00005537-200205000-00006

  • Benign paroxysmal positional vertigo: a clinician’s perspective.

    Ann. N. Y. Acad. Sci. 2001; 942: 201-209https://doi.org/10.1111/j.1749-6632.2001.tb03746.x

  • Benign paroxysmal positional vertigo – toward new definitions.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2014; 35: 323-328https://doi.org/10.1097/MAO.0000000000000197

    • Lopez-Escamez J.A.
    • Molina M.I.
    • Gamiz M.
    • Fernandez-Perez A.J.
    • Gomez M.
    • Palma M.J.
    • et al.

    Multiple positional nystagmus suggests multiple canal involvement in benign paroxysmal vertigo.

    Acta Otolaryngol. (Stockh.). 2005; 125: 954-961https://doi.org/10.1080/00016480510040146

    • Lee G.
    • Lee S.-G.
    • Park H.-S.
    • Kim B.J.
    • Choi S.-J.
    • Choi J.W.

    Clinical characteristics and associated factors of canal switch in benign paroxysmal positional vertigo.

    J. Vestib. Res. 2019; 29: 253-260https://doi.org/10.3233/VES-190667

    • Steddin S.
    • Ing D.
    • Brandt T.

    Horizontal canal benign paroxysmal positioning vertigo (h-BPPV): transition of canalolithiasis to cupulolithiasis.

    Ann. Neurol. 1996; 40: 918-922https://doi.org/10.1002/ana.410400615

    • Zhang S.-L.
    • Tian E.
    • Xu W.-C.
    • Zhu Y.-T.
    • Kong W.-J.

    Light cupula: to be or not to be?.

    Curr. Med. Sci. 2020; 40: 455-462https://doi.org/10.1007/s11596-020-2199-8

    • Imai T.
    • Matsuda K.
    • Takeda N.
    • Uno A.
    • Kitahara T.
    • Horii A.
    • et al.

    Light cupula: the pathophysiological basis of persistent geotropic positional nystagmus.

    BMJ Open. 2015; 5e006607https://doi.org/10.1136/bmjopen-2014-006607

    • Tang X.
    • Huang Q.
    • Chen L.
    • Liu P.
    • Feng T.
    • Ou Y.
    • et al.

    Clinical findings in patients with persistent positional nystagmus: the designation of “heavy and light cupula”.

    Front. Neurol. 2019; 10https://doi.org/10.3389/fneur.2019.00326

    • Kim C.-H.
    • Kim M.-B.
    • Ban J.H.

    Persistent geotropic direction-changing positional nystagmus with a null plane: the light cupula.

    Laryngoscope. 2014; 124: E15-E19https://doi.org/10.1002/lary.24048

  • Heavy water nystagmus and effects of alcohol.

    Nature. 1974; 247: 404-405https://doi.org/10.1038/247404a0

    • Aschan G.
    • Bergstedt M.
    • Goldberg L.
    • Laurell L.

    Positional nystagmus in man during and after alcohol intoxication.

    Q. J. Stud. Alcohol. 1956; 17: 381-405https://doi.org/10.15288/qjsa.1956.17.381

    • Bergenius J.
    • Tomanovic T.

    Persistent geotropic nystagmus – a different kind of cupular pathology and its localizing signs.

    Acta Otolaryngol. (Stockh.). 2006; 126: 698-704https://doi.org/10.1080/00016480500475609

    • Hiruma K.
    • Numata T.
    • Mitsuhashi T.
    • Tomemori T.
    • Watanabe R.
    • Okamoto Y.

    Two types of direction-changing positional nystagmus with neutral points.

    Auris Nasus Larynx. 2011; 38: 46-51https://doi.org/10.1016/j.anl.2010.07.004

    • Choi J.-Y.
    • Lee E.-S.
    • Kim H.-J.
    • Kim J.-S.

    Persistent geotropic positional nystagmus after meningitis: evidence for light cupula.

    J. Neurol. Sci. 2017; 379: 279-280https://doi.org/10.1016/j.jns.2017.06.036

  • Free-floating cells in the endolymphatic sac after surgical utricular nerve section.

    ORL. 1984; 46: 289-293https://doi.org/10.1159/000275726

    • Lagos A.E.
    • Ramos P.H.
    • Aracena-Carmona K.
    • Novoa I.

    Conversion from geotropic to apogeotropic direction changing positional nystagmus resulting in heavy cupula positional vertigo: case report.

    Braz. J. Otorhinolaryngol. 2020; ()https://doi.org/10.1016/j.bjorl.2020.10.016

    • Kim C.-H.
    • Shin J.E.
    • Shin D.H.
    • Kim Y.W.
    • Ban J.H.

    “Light cupula” involving all three semicircular canals: a frequently misdiagnosed disorder.

    Med. Hypotheses. 2014; 83: 541-544https://doi.org/10.1016/j.mehy.2014.09.002

  • Benign paroxysmal positional vertigo.

    Semin. Neurol. 2009; 29: 500-508https://doi.org/10.1055/s-0029-1241041

    • von Brevern M.
    • Clarke A.H.
    • Lempert T.

    Continuous vertigo and spontaneous nystagmus due to canalolithiasis of the horizontal canal.

    Neurology. 2001; 56: 684-686https://doi.org/10.1212/WNL.56.5.684

    • Luis L.
    • Costa J.
    • Vaz Garcia F.
    • Valls-Solé J.
    • Brandt T.
    • Schneider E.

    Spontaneous plugging of the horizontal semicircular canal with reversible canal dysfunction and recovery of vestibular evoked myogenic potentials.

    Otol. Neurotol. 2013; 34: 743-747https://doi.org/10.1097/MAO.0b013e318287f343

    • Ko K.M.
    • Song M.H.
    • Kim J.H.
    • Shim D.B.

    Persistent spontaneous nystagmus following a canalith repositioning procedure in horizontal semicircular canal benign paroxysmal positional vertigo.

    JAMA Otolaryngol. Neck Surg. 2014; 140: 250-252https://doi.org/10.1001/jamaoto.2013.6207

    • Bronstein A.M.
    • Kaski D.
    • Cutfield N.
    • Buckwell D.
    • Banga R.
    • Ray J.
    • et al.

    Head-jolting nystagmus: occlusion of the horizontal semicircular canal induced by vigorous head shaking.

    JAMA Otolaryngol. Neck Surg. 2015; 141: 757-760https://doi.org/10.1001/jamaoto.2015.0711

    • Della Santina C.C.
    • Potyagaylo V.
    • Migliaccio A.A.
    • Minor L.B.
    • Carey J.P.

    Orientation of human semicircular canals measured by three-dimensional multiplanar CT reconstruction.

    JARO J. Assoc. Res. Otolaryngol. 2005; 6: 191-206https://doi.org/10.1007/s10162-005-0003-x

    • Ahmed S.
    • Heidenreich K.D.
    • McHugh J.B.
    • Altschuler R.A.
    • Carender W.J.
    • Telian S.A.

    Refractory positional Vertigo with apogeotropic horizontal nystagmus after labyrinthitis: surgical treatment and identification of dysmorphic ampullae.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2015; 36: 1417-1420https://doi.org/10.1097/MAO.0000000000000820

    • Dallan I.
    • Bruschini L.
    • Neri E.
    • Nacci A.
    • Segnini G.
    • Rognini F.
    • et al.

    The role of high-resolution magnetic resonance in atypical and intractable benign paroxysmal positional vertigo: our preliminary experience.

    ORL J. Oto-Rhino-Laryngol. Relat. Spec. 2007; 69: 212-217https://doi.org/10.1159/000101541

    • Kao W.T.K.
    • Parnes L.S.
    • Chole R.A.

    Otoconia and otolithic membrane fragments within the posterior semicircular canal in benign paroxysmal positional vertigo.

    Laryngoscope. 2017; 127: 709-714https://doi.org/10.1002/lary.26115

    • Okada S.
    • Bartelle B.B.
    • Li N.
    • Breton-Provencher V.
    • Lee J.J.
    • Rodriguez E.
    • et al.

    Calcium-dependent molecular fMRI using a magnetic nanosensor.

    Nat. Nanotechnol. 2018; 13: 473-477https://doi.org/10.1038/s41565-018-0092-4

    • Otake H.
    • Sugiura M.
    • Naganawa S.
    • Nakashima T.

    3D-FLAIR magnetic resonance imaging in the evaluation of mumps deafness.

    Int. J. Pediatr. Otorhinolaryngol. 2006; 70: 2115-2117https://doi.org/10.1016/j.ijporl.2006.07.025

    • Sugiura M.
    • Naganawa S.
    • Sato E.
    • Nakashima T.

    Visualization of a high protein concentration in the cochlea of a patient with a large endolymphatic duct and sac, using three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging.

    J. Laryngol. Otol. 2006; 120: 1084-1086https://doi.org/10.1017/S0022215106003331

    • Sugiura M.
    • Naganawa S.
    • Nakata S.
    • Kojima S.
    • Nakashima T.

    3D-FLAIR MRI findings in a patient with Ramsay hunt syndrome.

    Acta Otolaryngol. (Stockh.). 2007; 127: 547-549https://doi.org/10.1080/00016480600801399

    • Yoshida T.
    • Sugiura M.
    • Naganawa S.
    • Teranishi M.
    • Nakata S.
    • Nakashima T.

    Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging findings and prognosis in sudden sensorineural hearing loss.

    Laryngoscope. 2008; 118: 1433-1437https://doi.org/10.1097/MLG.0b013e318172ef85

    • Naganawa S.
    • Ishihara S.
    • Iwano S.
    • Sone M.
    • Nakashima T.

    Detection of presumed hemorrhage in the ampullar endolymph of the semicircular canal: a case report.

    Magn. Reson. Med. Sci. MRMS Off. J. Jpn. Soc. Magn. Reson. Med. 2009; 8: 187-191https://doi.org/10.2463/mrms.8.187

    • Honda K.
    • Noguchi Y.
    • Kawashima Y.
    • Takahashi M.
    • Nishio A.
    • Kitamura K.

    Ex vivo visualization of the mouse otoconial layer compared with micro-computed tomography.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2015; 36: 311-317https://doi.org/10.1097/MAO.0000000000000376

    • Jannetta P.J.
    • Møller M.B.
    • Møller A.R.

    Disabling positional vertigo.

    N. Engl. J. Med. 1984; 310: 1700-1705https://doi.org/10.1056/NEJM198406283102604

  • Vestibular paroxysmia: vascular compression of the eighth nerve?.

    Lancet Lond. Engl. 1994; 343: 798-799https://doi.org/10.1016/s0140-6736(94)91879-1

  • Neurovascular cross compression in patients with hyperactive dysfunction symptoms of the eighth cranial nerve.

    Surg. Forum. 1975; 26: 467-469

    • Møller M.B.
    • Møller A.R.
    • Jannetta P.J.
    • Sekhar L.

    Diagnosis and surgical treatment of disabling positional vertigo.

    J. Neurosurg. 1986; 64: 21-28https://doi.org/10.3171/jns.1986.64.1.0021

    • Strupp M.
    • Lopez-Escamez J.A.
    • Kim J.-S.
    • Straumann D.
    • Jen J.C.
    • Carey J.
    • et al.

    Vestibular paroxysmia: diagnostic criteria.

    J. Vestib. Res. 2016; 26: 409-415https://doi.org/10.3233/VES-160589

    • Karamitros A.
    • Kalamatianos T.
    • Stranjalis G.
    • Anagnostou E.

    Vestibular paroxysmia: clinical features and imaging findings; a literature review.

    J. Neuroradiol. 2021; https://doi.org/10.1016/j.neurad.2021.07.007

    • Hüfner K.
    • Barresi D.
    • Glaser M.
    • Linn J.
    • Adrion C.
    • Mansmann U.
    • et al.

    Vestibular paroxysmia: diagnostic features and medical treatment.

    Neurology. 2008; 71: 1006-1014https://doi.org/10.1212/01.wnl.0000326594.91291.f8

    • Best C.
    • Gawehn J.
    • Krämer H.H.
    • Thömke F.
    • Ibis T.
    • Müller-Forell W.
    • et al.

    MRI and neurophysiology in vestibular paroxysmia: contradiction and correlation.

    J. Neurol. Neurosurg. Psychiatry. 2013; 84: 1349-1356https://doi.org/10.1136/jnnp-2013-305513

    • Ihtijarevic B.
    • Van Ombergen A.
    • Celis L.
    • Maes L.K.
    • Wuyts F.L.
    • Van de Heyning P.H.
    • et al.

    Symptoms and signs in 22 patients with vestibular paroxysmia.

    Clin. Otolaryngol. 2019; 44: 682-687https://doi.org/10.1111/coa.13356

    • Peker S.
    • Dinçer A.
    • Necmettin Pamir M.

    Vascular compression of the trigeminal nerve is a frequent finding in asymptomatic individuals: 3-T MR imaging of 200 trigeminal nerves using 3D CISS sequences.

    Acta Neurochir. 2009; 151: 1081-1088https://doi.org/10.1007/s00701-009-0329-y

    • Leal P.R.L.
    • Roch J.A.
    • Hermier M.
    • Souza M.A.N.
    • Cristino-Filho G.
    • Sindou M.

    Structural abnormalities of the trigeminal root revealed by diffusion tensor imaging in patients with trigeminal neuralgia caused by neurovascular compression: a prospective, double-blind, controlled study.

    Pain. 2011; 152: 2357-2364https://doi.org/10.1016/j.pain.2011.06.029

    • Thylur D.S.
    • Jacobs R.E.
    • Go J.L.
    • Toga A.W.
    • Niparko J.K.

    Ultra-high-field magnetic resonance imaging of the human inner ear at 11.7 tesla.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2017; 38: 133-138https://doi.org/10.1097/MAO.0000000000001242

    • Glueckert R.
    • Johnson Chacko L.
    • Schmidbauer D.
    • Potrusil T.
    • Pechriggl E.J.
    • Hoermann R.
    • et al.

    Visualization of the membranous labyrinth and nerve fiber pathways in human and animal inner ears using MicroCT imaging.

    Front. Neurosci. 2018; 12

  • Observations on the pathology of Ménière’s syndrome.

    Proc. R. Soc. Med. 1938; 31: 1317-1336

  • Endolymphatic hydrops: pathophysiology and experimental models.

    Otolaryngol. Clin. N. Am. 2010; 43: 971-983https://doi.org/10.1016/j.otc.2010.05.007

    • Smeds H.
    • Eastwood H.T.
    • Hampson A.J.
    • Sale P.
    • Campbell L.J.
    • Arhatari B.D.
    • et al.

    Endolymphatic hydrops is prevalent in the first weeks following cochlear implantation.

    Hear. Res. 2015; 327: 48-57https://doi.org/10.1016/j.heares.2015.04.017

    • O’Connell Ferster A.P.
    • Cureoglu S.
    • Keskin N.
    • Paparella M.M.
    • Isildak H.

    Secondary endolymphatic hydrops.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2017; 38: 774-779https://doi.org/10.1097/MAO.0000000000001377

    • Merchant S.N.
    • Rauch S.D.
    • Nadol J.B.

    Ménière’s disease.

    Eur. Arch. Otorhinolaryngol. 1995; 252: 63-75https://doi.org/10.1007/BF00168023

    • Schuknecht H.F.
    • Benitez J.T.
    • Beekhuis J.

    LXXXIII further observations on the pathology of Menière’s disease.

    Ann. Otol. Rhinol. Laryngol. 1962; 71: 1039-1053https://doi.org/10.1177/000348946207100417

    • Merchant S.N.
    • Adams J.C.
    • Nadol J.B.

    Pathophysiology of Meniere’s syndrome: are symptoms caused by endolymphatic hydrops?.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2005; 26: 74-81https://doi.org/10.1097/00129492-200501000-00013

    • Rauch S.D.
    • Merchant S.N.
    • Thedinger B.A.

    Meniere’s syndrome and endolymphatic hydrops. Double-blind temporal bone study.

    Ann. Otol. Rhinol. Laryngol. 1989; 98: 873-883https://doi.org/10.1177/000348948909801108

    • Vasama J.P.
    • Linthicum F.H.

    Meniere’s disease and endolymphatic hydrops without Meniere’s symptoms: temporal bone histopathology.

    Acta Otolaryngol. (Stockh.). 1999; 119: 297-301https://doi.org/10.1080/00016489950181279

    • Sperling N.M.
    • Paparella M.M.
    • Yoon T.H.
    • Zelterman D.

    Symptomatic versus asymptomatic endolymphatic hydrops: a histopathologic comparison.

    Laryngoscope. 1993; 103: 277-285https://doi.org/10.1288/00005537-199303000-00007

    • Schuknecht H.F.
    • Gulya A.J.
    • Endolymphatic hydrops.

    An overview and classification.

    Ann. Otol. Rhinol. Laryngol. Suppl. 1983; 106: 1-20https://doi.org/10.1177/00034894830920s501

  • Endolymphatic hydrops in Ménière’s disease: cause, consequence, or epiphenomenon?.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2013; 34: 1210-1214https://doi.org/10.1097/MAO.0b013e31829e83df

    • Nakashima T.
    • Naganawa S.
    • Sugiura M.
    • Teranishi M.
    • Sone M.
    • Hayashi H.
    • et al.

    Visualization of endolymphatic hydrops in patients with Meniere’s disease.

    Laryngoscope. 2007; 117: 415-420https://doi.org/10.1097/MLG.0b013e31802c300c

  • Visualization of endolymphatic hydrops with MR imaging in patients with Ménière’s disease and related pathologies: current status of its methods and clinical significance.

    Jpn. J. Radiol. 2014; 32: 191-204https://doi.org/10.1007/s11604-014-0290-4

    • Naganawa S.
    • Yamazaki M.
    • Kawai H.
    • Bokura K.
    • Sone M.
    • Nakashima T.

    Visualization of endolymphatic hydrops in Ménière’s disease with single-dose intravenous gadolinium-based contrast media using heavily T(2)-weighted 3D-FLAIR.

    Magn. Reson. Med. Sci. MRMS Off. J. Jpn. Soc. Magn. Reson. Med. 2010; 9: 237-242https://doi.org/10.2463/mrms.9.237

    • Naganawa S.
    • Satake H.
    • Kawamura M.
    • Fukatsu H.
    • Sone M.
    • Nakashima T.

    Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla.

    Eur. Radiol. 2008; 18: 920-924https://doi.org/10.1007/s00330-008-0854-8

    • Pyykkö I.
    • Nakashima T.
    • Yoshida T.
    • Zou J.
    • Naganawa S.

    Meniere’s disease: a reappraisal supported by a variable latency of symptoms and the MRI visualisation of endolymphatic hydrops.

    BMJ Open. 2013; 3e001555https://doi.org/10.1136/bmjopen-2012-001555

    • Friberg U.
    • Stahle J.
    • Svedberg A.

    The natural course of Meniere’s disease.

    Acta Otolaryngol. Suppl. 1984; 406: 72-77https://doi.org/10.3109/00016488309123007

    • Inui H.
    • Sakamoto T.
    • Ito T.
    • Kitahara T.

    Magnetic resonance-based volumetric measurement of the endolymphatic space in patients with Meniere’s disease and other endolymphatic hydrops-related diseases.

    Auris Nasus Larynx. 2019; 46: 493-497https://doi.org/10.1016/j.anl.2018.11.008

    • Attyé A.
    • Eliezer M.
    • Galloux A.
    • Pietras J.
    • Tropres I.
    • Schmerber S.
    • et al.

    Endolymphatic hydrops imaging: differential diagnosis in patients with Meniere disease symptoms.

    Diagn. Interv. Imaging. 2017; 98: 699-706https://doi.org/10.1016/j.diii.2017.06.002

    • Cho Y.S.
    • Kim J.S.
    • Kim M.B.
    • Koh S.M.
    • Lee C.H.
    • Kim Y.-K.
    • et al.

    Validation of inner ear MRI in patients with Ménière’s disease by comparing endolymphatic hydrops from histopathologic specimens.

    Sci. Rep. 2021; 11: 17738https://doi.org/10.1038/s41598-021-97213-7

    • Attyé A.
    • Eliezer M.
    • Medici M.
    • Tropres I.
    • Dumas G.
    • Krainik A.
    • et al.

    In vivo imaging of saccular hydrops in humans reflects sensorineural hearing loss rather than Meniere’s disease symptoms.

    Eur. Radiol. 2018; 28: 2916-2922https://doi.org/10.1007/s00330-017-5260-7

    • Lichtenhan J.T.
    • Lee C.
    • Dubaybo F.
    • Wenrich K.A.
    • Wilson U.S.

    The auditory nerve overlapped waveform (ANOW) detects small Endolymphatic manipulations that may Go undetected by conventional measurements.

    Front. Neurosci. 2017; 11

    • Badash I.
    • Quiñones P.M.
    • Oghalai K.J.
    • Wang J.
    • Lui C.G.
    • Macias-Escriva F.
    • et al.

    Endolymphatic hydrops is a marker of synaptopathy following traumatic noise exposure.

    Front. Cell Dev. Biol. 2021; 9

  • The effects of perfusing the perilymphatic space with artificial endolymph.

    Ann. Otol. Rhinol. Laryngol. 1970; 79: 754-765https://doi.org/10.1177/000348947007900408

    • Lindsay J.R.
    • Kohut R.I.
    • Sciarra P.A.

    Menière’s disease: pathology and manifestations.

    Ann. Otol. Rhinol. Laryngol. 1967; 76: 5-22https://doi.org/10.1177/000348946707600101

    • Brown D.H.
    • Mcclure J.A.
    • Downar-Zapolski Z.

    The membrane rupture theory of meniere’s disease — is it valid?.

    Laryngoscope. 1988; 98: 599-601https://doi.org/10.1288/00005537-198806000-00003

    • Koskas H.J.
    • Linthicum F.H.
    • House W.F.

    Membranous ruptures in Meniere’s disease: existence, location, and incidence.

    Otolaryngol. Neck Surg. 1983; 91: 61-67https://doi.org/10.1177/019459988309100111

    • Senofsky N.
    • Faber J.
    • Bozovic D.

    Vestibular Drop Attacks and Meniere’s Disease as Results of Otolithic Membrane Damage – A Numerical Model.

    ()2021

    • Avan P.
    • Le Gal S.
    • Michel V.
    • Dupont T.
    • Hardelin J.-P.
    • Petit C.
    • et al.

    Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane.

    Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 25948-25957https://doi.org/10.1073/pnas.1902781116

    • Strupp M.
    • Mandalà M.
    • López-Escámez J.A.

    Peripheral vestibular disorders: an update.

    Curr. Opin. Neurol. 2019; 32: 165-173https://doi.org/10.1097/WCO.0000000000000649

    • Roman-Naranjo P.
    • Gallego-Martinez A.
    • Soto-Varela A.
    • Aran I.
    • Moleon M.D.C.
    • Espinosa-Sanchez J.M.
    • et al.

    Burden of rare variants in the OTOG gene in familial Meniere’s disease.

    Ear Hear. 2020; 41: 1598-1605https://doi.org/10.1097/AUD.0000000000000878

    • Román-Naranjo P.
    • Parra-Perez A.M.
    • Escalera-Balsera A.
    • Soto-Varela A.
    • Gallego-Martinez A.
    • Aran I.
    • et al.

    Ultrarare Missense and Frameshift Variants in the TECTA Gene May Involve Tectorial Membrane in Familial Meniere Disease.

    2022https://doi.org/10.1101/2022.02.18.22270926 ()

    • Nakada T.
    • Teranishi M.
    • Sugiura S.
    • Uchida Y.
    • Naganawa S.
    • Sone M.

    Imaging of endolymphatic hydrops on a vertigo attack of Meniere’s disease.

    Nagoya J. Med. Sci. 2021; 83: 209-216https://doi.org/10.18999/nagjms.83.1.209

  • Function of the utriculo-endolymphatic valve: two cases of ruptured saccules in children.

    Arch. Otolaryngol. 1934; 19: 537-550https://doi.org/10.1001/archotol.1934.03790050002001

    • Kaya S.
    • Paparella M.M.
    • Cureoglu S.

    Histopathologic changes of human vestibular epithelia in intralabyrinthine hemorrhage.

    Ann. Otol. Rhinol. Laryngol. 2017; 126: 445-450https://doi.org/10.1177/0003489417700646

    • Silverstein H.
    • Naufal P.
    • Belal A.

    Causes of elevated perilymph protein concentrations.

    Laryngoscope. 1973; 83: 476-487https://doi.org/10.1288/00005537-197304000-00004

  • The utriculo-endolymphatic valve.

    Anat. Rec. 1928; 40: 61-65https://doi.org/10.1002/ar.1090400106

    • Perlman H.B.
    • Lindsay J.R.

    The utriculo-endolymphatic valve.

    Arch. Otolaryngol. 1936; 24: 68-75https://doi.org/10.1001/archotol.1936.00640050075007

  • The utriculo-endolymphatic valve.

    Q. Bull. Northwest. Univ. Med. Sch. 1943; 17: 108-111

    • Li H.
    • Rajan G.P.
    • Shaw J.
    • Rohani S.A.
    • Ladak H.M.
    • Agrawal S.
    • et al.

    A synchrotron and micro-CT study of the human endolymphatic duct system: is Meniere’s disease caused by an acute endolymph backflow?.

    Front. Surg. 2021; 8

    • Canalis R.F.
    • Gussen R.
    • Abemayor E.

    Endolymphatic hydrops after fenestration: a temporal bone study with implications on the function of the utriculo-endolymphatic valve.

    Am. J. Otolaryngol. 1989; 10: 404-409https://doi.org/10.1016/0196-0709(89)90036-7

    • Misra S.
    • Cheng K.
    • Curthoys I.
    • Wong C.
    • Mukherjee P.

    3D-reconstructions of Bast’s valve and membranous labyrinth: insights for vestibular implantation and Meniere’s disease.

    Otol. Neurotol. 2021; 42e1652https://doi.org/10.1097/MAO.0000000000003239

  • Observations on the pathological mechanism of conductive deafness in certain cases of neuroma of the VIII nerve.

    Proc. R. Soc. Med. 1950; 43: 291-298https://doi.org/10.1177/003591575004300417

    • Eckermeier L.
    • Pirsig W.
    • Mueller D.

    Histopathology of 30 non-operated acoustic schwannomas.

    Arch. Otorhinolaryngol. 1979; 222: 1-9https://doi.org/10.1007/BF00456332

    • Mahmud M.R.
    • Khan A.M.
    • Nadol J.B.

    Histopathology of the inner ear in Unoperated acoustic neuroma.

    Ann. Otol. Rhinol. Laryngol. 2003; 112: 979-986https://doi.org/10.1177/000348940311201111

    • Arriaga M.A.
    • Long S.
    • Nelson R.

    Clinical correlates of acoustic neuroma volume.

    Am. J. Otolaryngol. 1993; 14: 465-468https://doi.org/10.1097/00129492-199309000-00009

    • Nadol J.B.
    • Diamond P.F.
    • Thornton A.R.

    Correlation of hearing loss and radiologic dimensions of vestibular schwannomas (acoustic neuromas).

    Am. J. Otolaryngol. 1996; 17: 312-316

    • Ylikoski J.
    • Collan Y.
    • Palva T.
    • Jauhiainen T.

    Cochlear nerve in Neurilemomas: audiology and histopathology.

    Arch. Otolaryngol. 1978; 104: 679-684https://doi.org/10.1001/archotol.1978.00790120005001

    • Welling D.B.
    • Lasak J.M.
    • Akhmametyeva E.
    • Ghaheri B.
    • Chang L.-S.

    cDNA microarray analysis of vestibular schwannomas.

    Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2002; 23: 736-748https://doi.org/10.1097/00129492-200209000-00022

  • Cerebrospinal fluid and acoustic neurinoma specific proteins in perilymph.

    Acta Otolaryngol. (Stockh.). 1982; 93: 201-203https://doi.org/10.3109/00016488209130872

    • Berrettini S.
    • Seccia V.
    • Fortunato S.
    • Forli F.
    • Bruschini L.
    • Piaggi P.
    • Canapicchi R.

    Analysis of the 3-dimensional fluid-attenuated inversion-recovery (3D-FLAIR) sequence in idiopathic sudden sensorineural hearing loss.

    JAMA Otolaryngol.–Head & Neck Surg. 2013; 139: 456-464

    • Yamazaki M.
    • Naganawa S.
    • Kawai H.
    • Nihashi T.
    • Fukatsu H.
    • Nakashima T.

    Increased signal intensity of the cochlea on pre- and post-contrast enhanced 3D-FLAIR in patients with vestibular schwannoma.

    Neuroradiology. 2009; 51: 855-863https://doi.org/10.1007/s00234-009-0588-6

    • Kim D.Y.
    • Lee J.H.
    • Goh M.J.
    • Sung Y.S.
    • Choi Y.J.
    • Yoon R.G.
    • et al.

    Clinical significance of an increased Cochlear 3D fluid-attenuated inversion recovery signal intensity on an MR imaging examination in patients with acoustic neuroma.

    AJNR Am. J. Neuroradiol. 2014; 35: 1825-1829https://doi.org/10.3174/ajnr.A3936

    • Bhadelia R.A.
    • Tedesco K.L.
    • Hwang S.
    • Erbay S.H.
    • Lee P.H.
    • Shao W.
    • et al.

    Increased Cochlear fluid-attenuated inversion recovery signal in patients with vestibular schwannoma.

    AJNR Am. J. Neuroradiol. 2008; 29: 720-723https://doi.org/10.3174/ajnr.A0968

    • O’Connor A.F.
    • France M.W.
    • Morrison A.W.

    Perilymph total protein levels associated with cerebellopontine angle lesions.

    Am. J. Otolaryngol. 1981; 2: 193-195

    • Park J.J.
    • Jeong S.W.
    • Lee J.W.
    • Han S.-J.

    A case of sudden deafness with Intralabyrinthine hemorrhage Intralabyrinthine hemorrhage and sudden deafness.

    J. Audiol. Otol. 2015; 19: 178-181https://doi.org/10.7874/jao.2015.19.3.178

    • Kaya S.
    • Hizli Ö.
    • Schachern P.A.
    • Paparella M.M.
    • Cureoglu S.

    Effects of Intralabyrinthine hemorrhage on the Cochlear elements: a human temporal bone study.

    Otol. Neurotol. 2016; 37: 132-136https://doi.org/10.1097/MAO.0000000000000927

    • Palacios E.
    • Valvassori G.

    Hemorrhagic labyrinthitis.

    Ear Nose Throat J. 2000; 79: 80

    • Whitehead R.E.
    • MacDonald C.B.
    • Melhem E.R.
    • McMahon L.

    Spontaneous labyrinthine hemorrhage in sickle cell disease.

    AJNR Am. J. Neuroradiol. 1998; 19: 1437-1440

    • Sugiura M.
    • Naganawa S.
    • Teranishi M.
    • Sato E.
    • Kojima S.
    • Nakashima T.

    Inner ear hemorrhage in systemic lupus erythematosus.

    Laryngoscope. 2006; 116: 826-828https://doi.org/10.1097/01.MLG.0000215206.75542.BF

  • MR appearance of hemorrhage in the brain.

    Radiology. 1993; 189: 15-26https://doi.org/10.1148/radiology.189.1.8372185

    • Salomone R.
    • Abu T.A.A.
    • Chaves A.G.
    • Bocalini M.C.C.
    • de Oliveira Vicente A.
    • Riskalla P.E.

    Sudden hearing loss caused by labyrinthine hemorrhage.

    Braz. J. Otorhinolaryngol. 2008; 74: 776-779https://doi.org/10.1016/S1808-8694(15)31390-2

    • Chen X.-H.
    • Zeng C.-J.
    • Fang Z.-M.
    • Zhang R.
    • Cheng J.-M.
    • Lin C.

    The natural history of labyrinthine hemorrhage in patients with sudden sensorineural hearing loss.

    Ear Nose Throat J. 2019; 98: E13-E20https://doi.org/10.1177/0145561319834862

    • Lee J.W.
    • Park Y.A.
    • Park S.M.
    • Kong T.H.
    • Park S.Y.
    • Bong J.P.
    • et al.

    Clinical features and prognosis of sudden sensorineural hearing loss secondary to intralabyrinthine hemorrhage.

    J. Audiol. Otol. 2016; 20: 31-35https://doi.org/10.7874/jao.2016.20.1.31



  • Source link

    Back to top button