Using magnetic resonance imaging to improve diagnosis of peripheral vestibular disorders
Classification of vestibular symptoms: towards an international classification of vestibular disorders.
J. Vestib. Res. 2009; 19: 1-13https://doi.org/10.3233/VES-2009-0343
MRI of the internal auditory canal, labyrinth, and middle ear: how we do it.
Radiology. 2020; 297: 252-265https://doi.org/10.1148/radiol.2020201767
Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal.
Arch. Otolaryngol. Neck Surg. 1998; 124: 249-258https://doi.org/10.1001/archotol.124.3.249
Vestibular atelectasis.
Ann. Otol. Rhinol. Laryngol. 1988; 97: 565-576https://doi.org/10.1177/000348948809700601
Patients with vestibular loss, tullio phenomenon, and pressure-induced nystagmus: vestibular atelectasis?.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2014; 35: 866-872https://doi.org/10.1097/MAO.0000000000000366
Vestibular atelectasis: myth or reality?.
Laryngoscope. 2019; 129: 1689-1695https://doi.org/10.1002/lary.27793
Flat-panel volume CT: fundamental principles, technology, and applications.
RadioGraphics. 2008; 28: 2009-2022https://doi.org/10.1148/rg.287085004
Imaging of the temporal bone.
Clin. Radiol. 2020; 75: 658-674https://doi.org/10.1016/j.crad.2020.06.013
Spectrum of third window abnormalities: semicircular canal dehiscence and beyond.
AJNR Am. J. Neuroradiol. 2017; 38: 2-9https://doi.org/10.3174/ajnr.A4922
CT and MR imaging of congential abnormalities of the inner ear and internal auditory canal.
Eur. J. Radiol. 2001; 40: 94-104https://doi.org/10.1016/S0720-048X(01)00377-1
A decade of magnetic vestibular stimulation: from serendipity to physics to the clinic.
J. Neurophysiol. 2019; 121: 2013-2019https://doi.org/10.1152/jn.00873.2018
High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T.
Investig. Radiol. 2014; 49: 271-277https://doi.org/10.1097/RLI.0000000000000026
MRI magnetic field stimulates rotational sensors of the brain.
Curr. Biol. 2011; 21: 1635-1640https://doi.org/10.1016/j.cub.2011.08.029
Efficacy of diphenhydramine in the prevention of vertigo and nausea at 7T MRI.
Eur. J. Radiol. 2013; 82: 768-772https://doi.org/10.1016/j.ejrad.2011.08.001
Advanced MR imaging of the temporal bone.
Neuroimaging Clin. N. Am. 2019; 29: 197-202https://doi.org/10.1016/j.nic.2018.09.009
MR imaging of the internal auditory canal and inner ear at 3T: comparison between 3D driven equilibrium and 3D balanced fast field Echo sequences.
Korean J. Radiol. 2008; 9: 212-218https://doi.org/10.3348/kjr.2008.9.3.212
The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone.
Am. J. Neuroradiol. 2012; 33: 439-444https://doi.org/10.3174/ajnr.A2824
A review on screening tests for vestibular disorders.
J. Neurophysiol. 2019; 122: 81-92https://doi.org/10.1152/jn.00819.2018
Vestibular testing.
Contin. Lifelong. Learn. Neurol. 2021; 27: 330https://doi.org/10.1212/CON.0000000000000978
Efficient use of vestibular testing.
Otolaryngol. Clin. N. Am. 2021; 54: 875-891https://doi.org/10.1016/j.otc.2021.05.011
Epidemiology of benign paroxysmal positional vertigo: a population based study.
J. Neurol. Neurosurg. Psychiatry. 2007; 78: 710-715https://doi.org/10.1136/jnnp.2006.100420
The pathology, symptomatology and diagnosis of certain common disorders of the vestibular system.
Ann. Otol. Rhinol. Laryngol. 1952; 61: 987-1016https://doi.org/10.1177/000348945206100403
Occurrence of semicircular canal involvement in benign paroxysmal positional vertigo.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2002; 23: 926-932https://doi.org/10.1097/00129492-200211000-00019
Diagnosis and management of benign paroxysmal positional vertigo (BPPV).
CMAJ Can. Med. Assoc. J. 2003; 169: 681-693
Epidemiological data from 2270 PPV patients.
Audiol. Med. 2005; 3: 7-11https://doi.org/10.1080/16513860510028310
Benign positional vertigo: clinical and oculographic features in 240 cases.
Neurology. 1987; 37: 371-378https://doi.org/10.1212/wnl.37.3.371
Benign paroxysmal positional vertigo (BPPV): idiopathic versus post-traumatic.
Acta Otolaryngol. (Stockh.). 1999; 119: 745-749https://doi.org/10.1080/00016489950180360
What inner ear diseases cause benign paroxysmal positional vertigo?.
Acta Otolaryngol. (Stockh.). 2000; 120: 380-385https://doi.org/10.1080/000164800750000603
Typical and atypical benign paroxysmal positional vertigo: literature review and new theoretical considerations.
J. Vestib. Res. Equilib. Orientat. 2014; 24: 415-423https://doi.org/10.3233/VES-140535
Chapter 18 – Benign paroxysmal positional vertigo and its variants.
in: Furman J.M. Lempert T. Handb. Clin. Neurol. vol. 137. Elsevier,
2016: 241-256https://doi.org/10.1016/B978-0-444-63437-5.00018-2
Benign paroxysmal positional vertigo: diagnostic criteria.
J. Vestib. Res. Equilib. Orientat. 2015; 25: 105-117https://doi.org/10.3233/VES-150553
Clinical practice guideline: benign paroxysmal positional vertigo (update).
Otolaryngol. Neck Surg. 2017; 156: S1-47https://doi.org/10.1177/0194599816689667
The mechanics of benign paroxysmal vertigo.
J. Otolaryngol. 1979; 8: 151-158
Cupulolithiasis.
Arch. Otolaryngol. Chic. Ill. 1960; 1969: 765-778https://doi.org/10.1001/archotol.1969.00770030767020
Positional vertigo related to semicircular canalithiasis.
Otolaryngol. Neck Surg. 1995; 112: 154-161https://doi.org/10.1016/S0194-59989570315-2
Randomized trial of the canalith repositioning procedure.
Otolaryngol. Head Neck Surg. 1995; 113: 712-720https://doi.org/10.1016/S0194-5998(95)70010-2
Treatment of benign positional vertigo using the semont maneuver: efficacy in patients presenting without nystagmus.
Laryngoscope. 2002; 112: 796-801https://doi.org/10.1097/00005537-200205000-00006
Benign paroxysmal positional vertigo: a clinician’s perspective.
Ann. N. Y. Acad. Sci. 2001; 942: 201-209https://doi.org/10.1111/j.1749-6632.2001.tb03746.x
Benign paroxysmal positional vertigo – toward new definitions.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2014; 35: 323-328https://doi.org/10.1097/MAO.0000000000000197
Multiple positional nystagmus suggests multiple canal involvement in benign paroxysmal vertigo.
Acta Otolaryngol. (Stockh.). 2005; 125: 954-961https://doi.org/10.1080/00016480510040146
Clinical characteristics and associated factors of canal switch in benign paroxysmal positional vertigo.
J. Vestib. Res. 2019; 29: 253-260https://doi.org/10.3233/VES-190667
Horizontal canal benign paroxysmal positioning vertigo (h-BPPV): transition of canalolithiasis to cupulolithiasis.
Ann. Neurol. 1996; 40: 918-922https://doi.org/10.1002/ana.410400615
Light cupula: to be or not to be?.
Curr. Med. Sci. 2020; 40: 455-462https://doi.org/10.1007/s11596-020-2199-8
Light cupula: the pathophysiological basis of persistent geotropic positional nystagmus.
BMJ Open. 2015; 5e006607https://doi.org/10.1136/bmjopen-2014-006607
Clinical findings in patients with persistent positional nystagmus: the designation of “heavy and light cupula”.
Front. Neurol. 2019; 10https://doi.org/10.3389/fneur.2019.00326
Persistent geotropic direction-changing positional nystagmus with a null plane: the light cupula.
Laryngoscope. 2014; 124: E15-E19https://doi.org/10.1002/lary.24048
Heavy water nystagmus and effects of alcohol.
Nature. 1974; 247: 404-405https://doi.org/10.1038/247404a0
Positional nystagmus in man during and after alcohol intoxication.
Q. J. Stud. Alcohol. 1956; 17: 381-405https://doi.org/10.15288/qjsa.1956.17.381
Persistent geotropic nystagmus – a different kind of cupular pathology and its localizing signs.
Acta Otolaryngol. (Stockh.). 2006; 126: 698-704https://doi.org/10.1080/00016480500475609
Two types of direction-changing positional nystagmus with neutral points.
Auris Nasus Larynx. 2011; 38: 46-51https://doi.org/10.1016/j.anl.2010.07.004
Persistent geotropic positional nystagmus after meningitis: evidence for light cupula.
J. Neurol. Sci. 2017; 379: 279-280https://doi.org/10.1016/j.jns.2017.06.036
Free-floating cells in the endolymphatic sac after surgical utricular nerve section.
ORL. 1984; 46: 289-293https://doi.org/10.1159/000275726
Conversion from geotropic to apogeotropic direction changing positional nystagmus resulting in heavy cupula positional vertigo: case report.
Braz. J. Otorhinolaryngol. 2020; ()https://doi.org/10.1016/j.bjorl.2020.10.016
“Light cupula” involving all three semicircular canals: a frequently misdiagnosed disorder.
Med. Hypotheses. 2014; 83: 541-544https://doi.org/10.1016/j.mehy.2014.09.002
Benign paroxysmal positional vertigo.
Semin. Neurol. 2009; 29: 500-508https://doi.org/10.1055/s-0029-1241041
Continuous vertigo and spontaneous nystagmus due to canalolithiasis of the horizontal canal.
Neurology. 2001; 56: 684-686https://doi.org/10.1212/WNL.56.5.684
Spontaneous plugging of the horizontal semicircular canal with reversible canal dysfunction and recovery of vestibular evoked myogenic potentials.
Otol. Neurotol. 2013; 34: 743-747https://doi.org/10.1097/MAO.0b013e318287f343
Persistent spontaneous nystagmus following a canalith repositioning procedure in horizontal semicircular canal benign paroxysmal positional vertigo.
JAMA Otolaryngol. Neck Surg. 2014; 140: 250-252https://doi.org/10.1001/jamaoto.2013.6207
Head-jolting nystagmus: occlusion of the horizontal semicircular canal induced by vigorous head shaking.
JAMA Otolaryngol. Neck Surg. 2015; 141: 757-760https://doi.org/10.1001/jamaoto.2015.0711
Orientation of human semicircular canals measured by three-dimensional multiplanar CT reconstruction.
JARO J. Assoc. Res. Otolaryngol. 2005; 6: 191-206https://doi.org/10.1007/s10162-005-0003-x
Refractory positional Vertigo with apogeotropic horizontal nystagmus after labyrinthitis: surgical treatment and identification of dysmorphic ampullae.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2015; 36: 1417-1420https://doi.org/10.1097/MAO.0000000000000820
The role of high-resolution magnetic resonance in atypical and intractable benign paroxysmal positional vertigo: our preliminary experience.
ORL J. Oto-Rhino-Laryngol. Relat. Spec. 2007; 69: 212-217https://doi.org/10.1159/000101541
Otoconia and otolithic membrane fragments within the posterior semicircular canal in benign paroxysmal positional vertigo.
Laryngoscope. 2017; 127: 709-714https://doi.org/10.1002/lary.26115
Calcium-dependent molecular fMRI using a magnetic nanosensor.
Nat. Nanotechnol. 2018; 13: 473-477https://doi.org/10.1038/s41565-018-0092-4
3D-FLAIR magnetic resonance imaging in the evaluation of mumps deafness.
Int. J. Pediatr. Otorhinolaryngol. 2006; 70: 2115-2117https://doi.org/10.1016/j.ijporl.2006.07.025
Visualization of a high protein concentration in the cochlea of a patient with a large endolymphatic duct and sac, using three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging.
J. Laryngol. Otol. 2006; 120: 1084-1086https://doi.org/10.1017/S0022215106003331
3D-FLAIR MRI findings in a patient with Ramsay hunt syndrome.
Acta Otolaryngol. (Stockh.). 2007; 127: 547-549https://doi.org/10.1080/00016480600801399
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging findings and prognosis in sudden sensorineural hearing loss.
Laryngoscope. 2008; 118: 1433-1437https://doi.org/10.1097/MLG.0b013e318172ef85
Detection of presumed hemorrhage in the ampullar endolymph of the semicircular canal: a case report.
Magn. Reson. Med. Sci. MRMS Off. J. Jpn. Soc. Magn. Reson. Med. 2009; 8: 187-191https://doi.org/10.2463/mrms.8.187
Ex vivo visualization of the mouse otoconial layer compared with micro-computed tomography.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2015; 36: 311-317https://doi.org/10.1097/MAO.0000000000000376
Disabling positional vertigo.
N. Engl. J. Med. 1984; 310: 1700-1705https://doi.org/10.1056/NEJM198406283102604
Vestibular paroxysmia: vascular compression of the eighth nerve?.
Lancet Lond. Engl. 1994; 343: 798-799https://doi.org/10.1016/s0140-6736(94)91879-1
Neurovascular cross compression in patients with hyperactive dysfunction symptoms of the eighth cranial nerve.
Surg. Forum. 1975; 26: 467-469
Diagnosis and surgical treatment of disabling positional vertigo.
J. Neurosurg. 1986; 64: 21-28https://doi.org/10.3171/jns.1986.64.1.0021
Vestibular paroxysmia: diagnostic criteria.
J. Vestib. Res. 2016; 26: 409-415https://doi.org/10.3233/VES-160589
Vestibular paroxysmia: clinical features and imaging findings; a literature review.
J. Neuroradiol. 2021; https://doi.org/10.1016/j.neurad.2021.07.007
Vestibular paroxysmia: diagnostic features and medical treatment.
Neurology. 2008; 71: 1006-1014https://doi.org/10.1212/01.wnl.0000326594.91291.f8
MRI and neurophysiology in vestibular paroxysmia: contradiction and correlation.
J. Neurol. Neurosurg. Psychiatry. 2013; 84: 1349-1356https://doi.org/10.1136/jnnp-2013-305513
Symptoms and signs in 22 patients with vestibular paroxysmia.
Clin. Otolaryngol. 2019; 44: 682-687https://doi.org/10.1111/coa.13356
Vascular compression of the trigeminal nerve is a frequent finding in asymptomatic individuals: 3-T MR imaging of 200 trigeminal nerves using 3D CISS sequences.
Acta Neurochir. 2009; 151: 1081-1088https://doi.org/10.1007/s00701-009-0329-y
Structural abnormalities of the trigeminal root revealed by diffusion tensor imaging in patients with trigeminal neuralgia caused by neurovascular compression: a prospective, double-blind, controlled study.
Pain. 2011; 152: 2357-2364https://doi.org/10.1016/j.pain.2011.06.029
Ultra-high-field magnetic resonance imaging of the human inner ear at 11.7 tesla.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2017; 38: 133-138https://doi.org/10.1097/MAO.0000000000001242
Visualization of the membranous labyrinth and nerve fiber pathways in human and animal inner ears using MicroCT imaging.
Front. Neurosci. 2018; 12
Observations on the pathology of Ménière’s syndrome.
Proc. R. Soc. Med. 1938; 31: 1317-1336
Endolymphatic hydrops: pathophysiology and experimental models.
Otolaryngol. Clin. N. Am. 2010; 43: 971-983https://doi.org/10.1016/j.otc.2010.05.007
Endolymphatic hydrops is prevalent in the first weeks following cochlear implantation.
Hear. Res. 2015; 327: 48-57https://doi.org/10.1016/j.heares.2015.04.017
Secondary endolymphatic hydrops.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2017; 38: 774-779https://doi.org/10.1097/MAO.0000000000001377
Ménière’s disease.
Eur. Arch. Otorhinolaryngol. 1995; 252: 63-75https://doi.org/10.1007/BF00168023
LXXXIII further observations on the pathology of Menière’s disease.
Ann. Otol. Rhinol. Laryngol. 1962; 71: 1039-1053https://doi.org/10.1177/000348946207100417
Pathophysiology of Meniere’s syndrome: are symptoms caused by endolymphatic hydrops?.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2005; 26: 74-81https://doi.org/10.1097/00129492-200501000-00013
Meniere’s syndrome and endolymphatic hydrops. Double-blind temporal bone study.
Ann. Otol. Rhinol. Laryngol. 1989; 98: 873-883https://doi.org/10.1177/000348948909801108
Meniere’s disease and endolymphatic hydrops without Meniere’s symptoms: temporal bone histopathology.
Acta Otolaryngol. (Stockh.). 1999; 119: 297-301https://doi.org/10.1080/00016489950181279
Symptomatic versus asymptomatic endolymphatic hydrops: a histopathologic comparison.
Laryngoscope. 1993; 103: 277-285https://doi.org/10.1288/00005537-199303000-00007
An overview and classification.
Ann. Otol. Rhinol. Laryngol. Suppl. 1983; 106: 1-20https://doi.org/10.1177/00034894830920s501
Endolymphatic hydrops in Ménière’s disease: cause, consequence, or epiphenomenon?.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2013; 34: 1210-1214https://doi.org/10.1097/MAO.0b013e31829e83df
Visualization of endolymphatic hydrops in patients with Meniere’s disease.
Laryngoscope. 2007; 117: 415-420https://doi.org/10.1097/MLG.0b013e31802c300c
Visualization of endolymphatic hydrops with MR imaging in patients with Ménière’s disease and related pathologies: current status of its methods and clinical significance.
Jpn. J. Radiol. 2014; 32: 191-204https://doi.org/10.1007/s11604-014-0290-4
Visualization of endolymphatic hydrops in Ménière’s disease with single-dose intravenous gadolinium-based contrast media using heavily T(2)-weighted 3D-FLAIR.
Magn. Reson. Med. Sci. MRMS Off. J. Jpn. Soc. Magn. Reson. Med. 2010; 9: 237-242https://doi.org/10.2463/mrms.9.237
Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla.
Eur. Radiol. 2008; 18: 920-924https://doi.org/10.1007/s00330-008-0854-8
Meniere’s disease: a reappraisal supported by a variable latency of symptoms and the MRI visualisation of endolymphatic hydrops.
BMJ Open. 2013; 3e001555https://doi.org/10.1136/bmjopen-2012-001555
The natural course of Meniere’s disease.
Acta Otolaryngol. Suppl. 1984; 406: 72-77https://doi.org/10.3109/00016488309123007
Magnetic resonance-based volumetric measurement of the endolymphatic space in patients with Meniere’s disease and other endolymphatic hydrops-related diseases.
Auris Nasus Larynx. 2019; 46: 493-497https://doi.org/10.1016/j.anl.2018.11.008
Endolymphatic hydrops imaging: differential diagnosis in patients with Meniere disease symptoms.
Diagn. Interv. Imaging. 2017; 98: 699-706https://doi.org/10.1016/j.diii.2017.06.002
Validation of inner ear MRI in patients with Ménière’s disease by comparing endolymphatic hydrops from histopathologic specimens.
Sci. Rep. 2021; 11: 17738https://doi.org/10.1038/s41598-021-97213-7
In vivo imaging of saccular hydrops in humans reflects sensorineural hearing loss rather than Meniere’s disease symptoms.
Eur. Radiol. 2018; 28: 2916-2922https://doi.org/10.1007/s00330-017-5260-7
The auditory nerve overlapped waveform (ANOW) detects small Endolymphatic manipulations that may Go undetected by conventional measurements.
Front. Neurosci. 2017; 11
Endolymphatic hydrops is a marker of synaptopathy following traumatic noise exposure.
Front. Cell Dev. Biol. 2021; 9
The effects of perfusing the perilymphatic space with artificial endolymph.
Ann. Otol. Rhinol. Laryngol. 1970; 79: 754-765https://doi.org/10.1177/000348947007900408
Menière’s disease: pathology and manifestations.
Ann. Otol. Rhinol. Laryngol. 1967; 76: 5-22https://doi.org/10.1177/000348946707600101
The membrane rupture theory of meniere’s disease — is it valid?.
Laryngoscope. 1988; 98: 599-601https://doi.org/10.1288/00005537-198806000-00003
Membranous ruptures in Meniere’s disease: existence, location, and incidence.
Otolaryngol. Neck Surg. 1983; 91: 61-67https://doi.org/10.1177/019459988309100111
Vestibular Drop Attacks and Meniere’s Disease as Results of Otolithic Membrane Damage – A Numerical Model.
()2021
Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane.
Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 25948-25957https://doi.org/10.1073/pnas.1902781116
Peripheral vestibular disorders: an update.
Curr. Opin. Neurol. 2019; 32: 165-173https://doi.org/10.1097/WCO.0000000000000649
Burden of rare variants in the OTOG gene in familial Meniere’s disease.
Ear Hear. 2020; 41: 1598-1605https://doi.org/10.1097/AUD.0000000000000878
Ultrarare Missense and Frameshift Variants in the TECTA Gene May Involve Tectorial Membrane in Familial Meniere Disease.
Imaging of endolymphatic hydrops on a vertigo attack of Meniere’s disease.
Nagoya J. Med. Sci. 2021; 83: 209-216https://doi.org/10.18999/nagjms.83.1.209
Function of the utriculo-endolymphatic valve: two cases of ruptured saccules in children.
Arch. Otolaryngol. 1934; 19: 537-550https://doi.org/10.1001/archotol.1934.03790050002001
Histopathologic changes of human vestibular epithelia in intralabyrinthine hemorrhage.
Ann. Otol. Rhinol. Laryngol. 2017; 126: 445-450https://doi.org/10.1177/0003489417700646
Causes of elevated perilymph protein concentrations.
Laryngoscope. 1973; 83: 476-487https://doi.org/10.1288/00005537-197304000-00004
The utriculo-endolymphatic valve.
Anat. Rec. 1928; 40: 61-65https://doi.org/10.1002/ar.1090400106
The utriculo-endolymphatic valve.
Arch. Otolaryngol. 1936; 24: 68-75https://doi.org/10.1001/archotol.1936.00640050075007
The utriculo-endolymphatic valve.
Q. Bull. Northwest. Univ. Med. Sch. 1943; 17: 108-111
A synchrotron and micro-CT study of the human endolymphatic duct system: is Meniere’s disease caused by an acute endolymph backflow?.
Front. Surg. 2021; 8
Endolymphatic hydrops after fenestration: a temporal bone study with implications on the function of the utriculo-endolymphatic valve.
Am. J. Otolaryngol. 1989; 10: 404-409https://doi.org/10.1016/0196-0709(89)90036-7
3D-reconstructions of Bast’s valve and membranous labyrinth: insights for vestibular implantation and Meniere’s disease.
Otol. Neurotol. 2021; 42e1652https://doi.org/10.1097/MAO.0000000000003239
Observations on the pathological mechanism of conductive deafness in certain cases of neuroma of the VIII nerve.
Proc. R. Soc. Med. 1950; 43: 291-298https://doi.org/10.1177/003591575004300417
Histopathology of 30 non-operated acoustic schwannomas.
Arch. Otorhinolaryngol. 1979; 222: 1-9https://doi.org/10.1007/BF00456332
Histopathology of the inner ear in Unoperated acoustic neuroma.
Ann. Otol. Rhinol. Laryngol. 2003; 112: 979-986https://doi.org/10.1177/000348940311201111
Clinical correlates of acoustic neuroma volume.
Am. J. Otolaryngol. 1993; 14: 465-468https://doi.org/10.1097/00129492-199309000-00009
Correlation of hearing loss and radiologic dimensions of vestibular schwannomas (acoustic neuromas).
Am. J. Otolaryngol. 1996; 17: 312-316
Cochlear nerve in Neurilemomas: audiology and histopathology.
Arch. Otolaryngol. 1978; 104: 679-684https://doi.org/10.1001/archotol.1978.00790120005001
cDNA microarray analysis of vestibular schwannomas.
Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2002; 23: 736-748https://doi.org/10.1097/00129492-200209000-00022
Cerebrospinal fluid and acoustic neurinoma specific proteins in perilymph.
Acta Otolaryngol. (Stockh.). 1982; 93: 201-203https://doi.org/10.3109/00016488209130872
Analysis of the 3-dimensional fluid-attenuated inversion-recovery (3D-FLAIR) sequence in idiopathic sudden sensorineural hearing loss.
JAMA Otolaryngol.–Head & Neck Surg. 2013; 139: 456-464
Increased signal intensity of the cochlea on pre- and post-contrast enhanced 3D-FLAIR in patients with vestibular schwannoma.
Neuroradiology. 2009; 51: 855-863https://doi.org/10.1007/s00234-009-0588-6
Clinical significance of an increased Cochlear 3D fluid-attenuated inversion recovery signal intensity on an MR imaging examination in patients with acoustic neuroma.
AJNR Am. J. Neuroradiol. 2014; 35: 1825-1829https://doi.org/10.3174/ajnr.A3936
Increased Cochlear fluid-attenuated inversion recovery signal in patients with vestibular schwannoma.
AJNR Am. J. Neuroradiol. 2008; 29: 720-723https://doi.org/10.3174/ajnr.A0968
Perilymph total protein levels associated with cerebellopontine angle lesions.
Am. J. Otolaryngol. 1981; 2: 193-195
A case of sudden deafness with Intralabyrinthine hemorrhage Intralabyrinthine hemorrhage and sudden deafness.
J. Audiol. Otol. 2015; 19: 178-181https://doi.org/10.7874/jao.2015.19.3.178
Effects of Intralabyrinthine hemorrhage on the Cochlear elements: a human temporal bone study.
Otol. Neurotol. 2016; 37: 132-136https://doi.org/10.1097/MAO.0000000000000927
Hemorrhagic labyrinthitis.
Ear Nose Throat J. 2000; 79: 80
Spontaneous labyrinthine hemorrhage in sickle cell disease.
AJNR Am. J. Neuroradiol. 1998; 19: 1437-1440
Inner ear hemorrhage in systemic lupus erythematosus.
Laryngoscope. 2006; 116: 826-828https://doi.org/10.1097/01.MLG.0000215206.75542.BF
MR appearance of hemorrhage in the brain.
Radiology. 1993; 189: 15-26https://doi.org/10.1148/radiology.189.1.8372185
Sudden hearing loss caused by labyrinthine hemorrhage.
Braz. J. Otorhinolaryngol. 2008; 74: 776-779https://doi.org/10.1016/S1808-8694(15)31390-2
The natural history of labyrinthine hemorrhage in patients with sudden sensorineural hearing loss.
Ear Nose Throat J. 2019; 98: E13-E20https://doi.org/10.1177/0145561319834862
Clinical features and prognosis of sudden sensorineural hearing loss secondary to intralabyrinthine hemorrhage.
J. Audiol. Otol. 2016; 20: 31-35https://doi.org/10.7874/jao.2016.20.1.31