Header
Header
Article

The metabolic nature of inflammatory bowel diseases


  • Chang, J. T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 383, 2652–2664 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • de Souza, H. S. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Roda, G. et al. Crohn’s disease. Nat. Rev. Dis. Prim. 6, 22 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Kobayashi, T. et al. Ulcerative colitis. Nat. Rev. Dis. Prim. 6, 74 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Coward, S. et al. Past and future burden of inflammatory bowel diseases based on modeling of population-based data. Gastroenterology 156, 1345–1353 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Jones, G. R. et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut 68, 1953–1960 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Kaplan, G. G. & Windsor, J. W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 18, 56–66 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Wintjens, D. et al. Disease activity patterns of crohn’s disease in the first ten years after diagnosis in the population-based IBD south limburg cohort. J. Crohns Colitis 15, 391–400 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Ben-Horin, S. & Chowers, Y. Tailoring anti-TNF therapy in IBD: drug levels and disease activity. Nat. Rev. Gastroenterol. Hepatol. 11, 243–255 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Danese, S., Vuitton, L. & Peyrin-Biroulet, L. Biologic agents for IBD: practical insights. Nat. Rev. Gastroenterol. Hepatol. 12, 537–545 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moschen, A. R., Tilg, H. & Raine, T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 16, 185–196 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salas, A. et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 323–337 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Allez, M. et al. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: definitions, frequency and pharmacological aspects. J. Crohns Colitis 4, 355–366 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Friedrich, M. et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khalili, H. et al. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 15, 525–535 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Temba, G. S. et al. Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat. Immunol. 22, 287–300 (2021). This seminal study shows that a switch from a traditional rural to an urban lifestyle links to an inflammatory immune phenotype.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh, S., Dulai, P. S., Zarrinpar, A., Ramamoorthy, S. & Sandborn, W. J. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 14, 110–121 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rahmani, J. et al. Body mass index and risk of inflammatory bowel disease: a systematic review and dose-response meta-analysis of cohort studies of over a million participants. Obes. Rev. 20, 1312–1320 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Bhagavathula, A. S., Clark, C. C. T., Rahmani, J. & Chattu, V. K. Impact of body mass index on the development of inflammatory bowel disease: a systematic review and dose-response analysis of 15.6 million participants. Healthcare https://doi.org/10.3390/healthcare9010035 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aguilera, J. M. The food matrix: implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 59, 3612–3629 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 4, 308–319 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ko, C. W., Qu, J., Black, D. D. & Tso, P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol. 17, 169–183 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bernier-Latmani, J. & Petrova, T. V. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat. Rev. Gastroenterol. Hepatol. 14, 510–526 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo, Q., Ye, A., Bellissimo, N., Singh, H. & Rousseau, D. Modulating fat digestion through food structure design. Prog. Lipid Res. 68, 109–118 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duca, F. A., Waise, T. M. Z., Peppler, W. T. & Lam, T. K. T. The metabolic impact of small intestinal nutrient sensing. Nat. Commun. 12, 903 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sullivan, Z. A. et al. gammadelta T cells regulate the intestinal response to nutrient sensing. Science https://doi.org/10.1126/science.aba8310 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112, 1821–1830 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Richard, M. L. & Sokol, H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16, 331–345 (2019).

    PubMed 

    Google Scholar
     

  • Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tilg, H., Zmora, N., Adolph, T. E. & Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20, 40–54 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taskinen, M. R., Packard, C. J. & Boren, J. Dietary fructose and the metabolic syndrome. Nutrients https://doi.org/10.3390/nu11091987 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unger, A. L., Torres-Gonzalez, M. & Kraft, J. Dairy fat consumption and the risk of metabolic syndrome: an examination of the saturated fatty acids in dairy. Nutrients https://doi.org/10.3390/nu11092200 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornier, M. A. et al. The metabolic syndrome. Endocr. Rev. 29, 777–822 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, X., Wang, Y., Antony, V., Sun, H. & Liang, G. Metabolism-associated molecular patterns (MAMPs). Trends Endocrinol. Metab. 31, 712–724 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018). This key study shows that a Western diet induces a long-lasting reprogramming of innate immune cells.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eguchi, K. et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 15, 518–533 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lancaster, G. I. et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab. 27, 1096–1110 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hug, H., Mohajeri, M. H. & La Fata, G. Toll-like receptors: regulators of the immune response in the human gut. Nutrients https://doi.org/10.3390/nu10020203 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, Y., Kinio, A. & Saleh, M. Functions of NOD-like receptors in human diseases. Front. Immunol. 4, 333 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Huang, S., Xing, Y. & Liu, Y. Emerging roles for the ER stress sensor IRE1alpha in metabolic regulation and disease. J. Biol. Chem. 294, 18726–18741 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014). This study established that perturbation of the gut microbiota by artificial sweeteners impairs glucose metabolism.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cani, P. D. Microbiota and metabolites in metabolic diseases. Nat. Rev. Endocrinol. 15, 69–70 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Bäckhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wan, Y. et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68, 1417–1429 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boulange, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8, 42 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17, 279–297 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M. & Clement, K. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology 160, 573–599 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monteiro-Sepulveda, M. et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22, 113–124 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sugihara, K., Morhardt, T. L. & Kamada, N. The role of dietary nutrients in inflammatory bowel disease. Front. Immunol. 9, 3183 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mehandru, S. & Colombel, J. F. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat. Rev. Gastroenterol. Hepatol. 18, 83–84 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Patankar, J. V. & Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol. 17, 543–556 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17, 497–511 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F. & Becker, C. Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol. Gastroenterol. Hepatol. 4, 33–46 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gunther, C. et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cader, M. Z. et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat. Immunol. 17, 1046–1056 (2016). This study links genetic Crohn’s disease risk with perturbation of immunometabolism in macrophages.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cader, M. Z. et al. FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 180, 278–295 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Voss, K. et al. A guide to interrogating immunometabolism. Nat. Rev. Immunol. 21, 637–652 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hinrichsen, F. et al. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab. 33, 2355–2366 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saveljeva, S. et al. A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metab. 34, 106–124 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell Metab. 18, 465–469 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao, Q. et al. CD4+ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abc6373 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J. Clin. Invest. 130, 2111–2128 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gerner, R. R. et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 67, 1813–1823 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zmora, N., Levy, M., Pevsner-Fishcer, M. & Elinav, E. Inflammasomes and intestinal inflammation. Mucosal Immunol. 10, 865–883 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGettrick, A. F. & O’Neill, L. A. J. The role of HIF in immunity and inflammation. Cell Metab. 32, 524–536 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baier, J. et al. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J. Clin. Invest. 130, 5703–5720 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, X. et al. An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease. Mol. Nutr. Food Res. 65, e2000461 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brown, E. M. et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25, 668–680 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rath, E. et al. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61, 1269–1278 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khaloian, S. et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut 69, 1939–1951 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Martinez-Medina, M. et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 63, 116–124 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Arnone, D. et al. Long-term overconsumption of fat and sugar causes a partially reversible pre-inflammatory bowel disease state. Front. Nutr. 8, 758518 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Khan, S. et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aay6218 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Montrose, D. C. et al. Dietary fructose alters the composition, localization, and metabolism of gut microbiota in association with worsening colitis. Cell Mol. Gastroenterol. Hepatol. 11, 525–550 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawabata, K. et al. A high‑fructose diet induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate sodium‑induced colitis. Int. J. Mol. Med. 43, 1487–1496 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Fajstova, A. et al. Diet rich in simple sugars promotes pro-inflammatory response via gut microbiota alteration and TLR4 signaling. Cells https://doi.org/10.3390/cells9122701 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laffin, M. et al. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep. 9, 12294 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • He, Z. et al. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metab. 33, 1358–1371 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015). A landmark report that links Western food additives with gut bacterial dysbiosis and inflammation in genetically susceptible mice.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Viennois, E. et al. Dietary emulsifiers directly impact adherent-invasive E. coli gene expression to drive chronic intestinal inflammation. Cell Rep. 33, 108229 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Evstatiev, R. et al. The food additive EDTA aggravates colitis and colon carcinogenesis in mouse models. Sci. Rep. 11, 5188 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barreau, F., Tisseyre, C., Menard, S., Ferrand, A. & Carriere, M. Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer. Part. Fibre Toxicol. 18, 26 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ruiz, P. A. et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66, 1216–1224 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ogawa, T. et al. Oral intake of silica nanoparticles exacerbates intestinal inflammation. Biochem. Biophys. Res. Commun. 534, 540–546 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Progatzky, F. et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat. Commun. 5, 5864 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh, V. et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 68, 1801–1812 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487, 104–108 (2012). This seminal study demonstrated that diet-induced bacterial dysbiosis drives colitis in genetically susceptible mice.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell 178, 1041–1056 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith, S. A. et al. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Invest. https://doi.org/10.1172/JCI133371 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, M. et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30, 17–30 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagatake, T. et al. Intestinal microbe-dependent omega3 lipid metabolite alphaKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunol. 15, 289–300 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Breuer, U. & Harms, H. Debaryomyces hansenii — an extremophilic yeast biotechnological potential. Yeast 23, 415–437 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xing, M. et al. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat. Commun. 10, 1609 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu, T. C. et al. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 29, 988–1001 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schaubeck, M. et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225–237 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, J. Y. et al. High-fat diet and antibiotics cooperatively impair mitochondrial bioenergetics to trigger dysbiosis that exacerbates pre-inflammatory bowel disease. Cell Host Microbe 28, 273–284 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nagao-Kitamoto, H. et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell. Mol. Gastroenterol. Hepatol. 2, 468–481 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prendeville, H. & Lynch, L. Diet, lipids, and antitumor immunity. Cell Mol. Immunol. 19, 432–444 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhivaki, D. & Kagan, J. C. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat. Rev. Immunol. 22, 322–330 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Korbecki, J. & Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm. Res. 68, 915–932 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ghezzal, S. et al. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158530 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kunisawa, J. et al. Regulation of intestinal IgA responses by dietary palmitic acid and its metabolism. J. Immunol. 193, 1666–1671 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zarate, R., El Jaber-Vazdekis, N., Tejera, N., Perez, J. A. & Rodriguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl Med. 6, 25 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mayr, L. et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat. Commun. 11, 1775 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwärzler, J. et al. PUFA-induced metabolic enteritis as a fuel for Crohn’s disease. Gastroenterology https://doi.org/10.1053/j.gastro.2022.01.004 (2022). The paper identifies a mechanism of how dietary PUFAs in a Western diet instigate metabolic enteritis in mice resembling aspects of Crohn’s disease.

    Article 
    PubMed 

    Google Scholar
     

  • Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Naito, Y. et al. Effects of arachidonic acid intake on inflammatory reactions in dextran sodium sulphate-induced colitis in rats. Br. J. Nutr. 114, 734–745 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie, M. et al. Effects of linoleic acid-rich diet on plasma profiles of eicosanoids and development of colitis in Il-10-/- mice. J. Agric. Food Chem. 68, 7641–7647 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramakers, J. D., Mensink, R. P., Verstege, M. I., te Velde, A. A. & Plat, J. An arachidonic acid-enriched diet does not result in more colonic inflammation as compared with fish oil- or oleic acid-enriched diets in mice with experimental colitis. Br. J. Nutr. 100, 347–354 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, Q. et al. Dietary intake of n-3 PUFAs modifies the absorption, distribution and bioavailability of fatty acids in the mouse gastrointestinal tract. Lipids Health Dis. 16, 10 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Camuesco, D. et al. Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. J. Nutr. 135, 687–694 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu, Z. et al. Algal oil rich in n-3 PUFA alleviates DSS-induced colitis via regulation of gut microbiota and restoration of intestinal barrier. Front. Microbiol. 11, 615404 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kitsukawa, Y. et al. Effect of ingestion of eicosapentaenoic acid ethyl ester on carrageenan-induced colitis in guinea pigs. Gastroenterology 102, 1859–1866 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matsunaga, H. et al. Omega-3 fatty acids exacerbate DSS-induced colitis through decreased adiponectin in colonic subepithelial myofibroblasts. Inflamm. Bowel Dis. 14, 1348–1357 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Hegazi, R. A. et al. Dietary fatty acids modulate chronic colitis, colitis-associated colon neoplasia and COX-2 expression in IL-10 knockout mice. Nutrition 22, 275–282 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Awada, M. et al. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J. Lipid Res. 53, 2069–2080 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yki-Jarvinen, H., Luukkonen, P. K., Hodson, L. & Moore, J. B. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 18, 770–786 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morton, H., Pedley, K. C., Stewart, R. J. C. & Coad, J. Inflammatory bowel disease: are symptoms and diet linked? Nutrients https://doi.org/10.3390/nu12102975 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasson, A. N. et al. The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 6, 754–769 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 145, 970–977 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 374, n1554 (2021). This large cohort study shows that consumption of ultra-processed foods links to the risk of developing IBD.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lo, C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. 20, e1323–e1337 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peters, V. et al. Western and carnivorous dietary patterns are associated with greater likelihood of IBD-development in a large prospective population-based cohort. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab219 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Jantchou, P., Morois, S., Clavel-Chapelon, F., Boutron-Ruault, M. C. & Carbonnel, F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am. J. Gastroenterol. 105, 2195–2201 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dong, C. et al. OP17 Protein intakes and risk of inflammatory bowel disease in the European Prospective Investigation into Cancer and Nutrition cohort (EPIC-IBD). J. Crohn’s Colitis 14, S015 (2020).

    Article 

    Google Scholar
     

  • Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barreiro-de Acosta, M. et al. Emigration to western industrialized countries: a risk factor for developing inflammatory bowel disease. J. Crohns Colitis 5, 566–569 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Santoru, M. L. et al. Metabolic alteration in plasma and biopsies from patients with IBD. Inflamm. Bowel Dis. 27, 1335–1345 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Zaiatz Bittencourt, V., Jones, F., Tosetto, M., Doherty, G. A. & Ryan, E. J. Dysregulation of metabolic pathways in circulating natural killer cells isolated from inflammatory bowel disease patients. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab014 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di’Narzo, A. F. et al. Integrative analysis of the inflammatory bowel disease serum metabolome improves our understanding of genetic etiology and points to novel putative therapeutic targets. Gastroenterology 162, 828–843 (2022).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hall, C. H. T. et al. Creatine transporter, reduced in colon tissues from patients with inflammatory bowel diseases, regulates energy balance in intestinal epithelial cells, epithelial integrity, and barrier function. Gastroenterology 159, 984–998 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haberman, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10, 38 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang, B. et al. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways. Cell 179, 1160–1176 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serino, M. et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Caruso, R., Lo, B. C. & Nunez, G. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature https://doi.org/10.1038/s41586-022-04648-7 (2022). This extensive analysis ranks metabolic aspects of gut bacterial dysbiosis in IBD.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J. K., Abraham, B. & El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106, 563–573 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • IBD in EPIC Study Investigators et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut 58, 1606–1611 (2009).

    Article 
    CAS 

    Google Scholar
     

  • de Silva, P. S. et al. An association between dietary arachidonic acid, measured in adipose tissue, and ulcerative colitis. Gastroenterology 139, 1912–1917 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shoda, R., Matsueda, K., Yamato, S. & Umeda, N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am. J. Clin. Nutr. 63, 741–745 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ananthakrishnan, A. N. et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 63, 776–784 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chan, S. S. et al. Association between high dietary intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn’s disease. Aliment. Pharmacol. Ther. 39, 834–842 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nishida, T. et al. Increased arachidonic acid composition of phospholipids in colonic mucosa from patients with active ulcerative colitis. Gut 28, 1002–1007 (1987).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pearl, D. S. et al. Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity. J. Crohn’s Colitis 8, 70–79 (2014).

    Article 

    Google Scholar
     

  • Costea, I. et al. Interactions between the dietary polyunsaturated fatty acid ratio and genetic factors determine susceptibility to pediatric Crohn’s disease. Gastroenterology 146, 929–931 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alzoghaibi, M. A., Walsh, S. W., Willey, A., Fowler, A. A. 3rd & Graham, M. F. Linoleic acid, but not oleic acid, upregulates the production of interleukin-8 by human intestinal smooth muscle cells isolated from patients with Crohn’s disease. Clin. Nutr. 22, 529–535 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peters, V. et al. Dietary intake pattern is associated with occurrence of flares in IBD patients. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scoville, E. A. et al. Serum polyunsaturated fatty acids correlate with serum cytokines and clinical disease activity in Crohn’s disease. Sci. Rep. 9, 2882 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Halmos, E. P. & Gibson, P. R. Dietary management of IBD — insights and advice. Nat. Rev. Gastroenterol. Hepatol. 12, 133–146 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fitzpatrick, J. A., Melton, S. L., Yao, C. K., Gibson, P. R. & Halmos, E. P. Dietary management of adults with IBD — the emerging role of dietary therapy. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-022-00619-5 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bischoff, S. C. et al. ESPEN practical guideline: clinical nutrition in inflammatory bowel disease. Clin. Nutr. 39, 632–653 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Levine, A. et al. Dietary guidance from the international organization for the study of inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 18, 1381–1392 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Ruemmele, F. M. et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis 8, 1179–1207 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Narula, N. et al. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 4, CD000542 (2018).

    PubMed 

    Google Scholar
     

  • Middleton, S. J., Rucker, J. T., Kirby, G. A., Riordan, A. M. & Hunter, J. O. Long-chain triglycerides reduce the efficacy of enteral feeds in patients with active Crohn’s disease. Clin. Nutr. 14, 229–236 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Levine, A. et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157, 440–450 (2019). This study conceptually demonstrated that a restriction diet ameliorates the course of mild to moderate pediatric Crohn’s disease.

    PubMed 
    Article 

    Google Scholar
     

  • Svolos, V. et al. Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology 156, 1354–1367 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Sigall-Boneh, R. et al. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease. Inflamm. Bowel Dis. 20, 1353–1360 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Yanai, H. et al. The Crohn’s disease exclusion diet for induction and maintenance of remission in adults with mild-to-moderate Crohn’s disease (CDED-AD): an open-label, pilot, randomised trial. Lancet Gastroenterol. Hepatol. https://doi.org/10.1016/S2468-1253(21)00299-5 (2021). This study conceptually demonstrated that a restriction diet ameliorates the course of mild to moderate adult Crohn’s disease.

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, J. D. et al. A randomized trial comparing the specific carbohydrate diet to a mediterranean diet in adults with Crohn’s disease. Gastroenterology 161, 837–852 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sarbagili Shabat, C. et al. Use of Fecal transplantation with a novel diet for mild to moderate active ulcerative colitis: The CRAFT UC randomized controlled trial. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab165 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Feagan, B. G. et al. Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC randomized controlled trials. JAMA 299, 1690–1697 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Belluzzi, A. et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N. Engl. J. Med. 334, 1557–1560 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lev-Tzion, R., Griffiths, A. M., Leder, O. & Turner, D. Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD006320.pub4 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chassaing, B. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 162, 743–756 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Bergemalm, D. et al. Systemic inflammation in preclinical ulcerative colitis. Gastroenterology 161, 1526–1539 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grootjans, J., Kaser, A., Kaufman, R. J. & Blumberg, R. S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sethi, J. K. & Hotamisligil, G. S. Metabolic Messengers: tumour necrosis factor. Nat. Metab. 3, 1302–1312 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ke, X. et al. Gut bacterial metabolites modulate endoplasmic reticulum stress. Genome Biol. 22, 292 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schulze, M. B., Minihane, A. M., Saleh, R. N. M. & Risérus, U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol. 8, 915–930 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Katan, M. B., Zock, P. L. & Mensink, R. P. Trans fatty acids and their effects on lipoproteins in humans. Annu. Rev. Nutr. 15, 473–493 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hotamisligil, G. S. Foundations of immunometabolism and implications for metabolic health and disease. Immunity 47, 406–420 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 17, 873–882 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Michaudel, C. & Sokol, H. The gut microbiota at the service of immunometabolism. Cell Metab. 32, 514–523 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Investig. 116, 1793–1801 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Back to top button