Header
Header
Article

Alpha-power in electroencephalography as good outcome predictor for out-of-hospital cardiac arrest survivors


  • Atwood, C., Eisenberg, M. S., Herlitz, J. & Rea, T. D. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67, 75–80 (2005).

    PubMed 

    Google Scholar
     

  • Mozaffarian, D. et al. Heart disease and stroke statistics–2015 update: A report from the American Heart Association. Circulation 131, e29-322 (2015).

    PubMed 

    Google Scholar
     

  • Dragancea, I., Rundgren, M., Englund, E., Friberg, H. & Cronberg, T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation 84, 337–342 (2013).

    PubMed 

    Google Scholar
     

  • Lemiale, V. et al. Intensive care unit mortality after cardiac arrest: The relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39, 1972–1980 (2013).

    PubMed 

    Google Scholar
     

  • Ben-Hamouda, N., Taccone, F. S., Rossetti, A. O. & Oddo, M. Contemporary approach to neurologic prognostication of coma after cardiac arrest. Chest 146, 1375–1386 (2014).

    PubMed 

    Google Scholar
     

  • Sandroni, C. et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation 85, 1779–1789 (2014).

    PubMed 

    Google Scholar
     

  • Nolan, J. P. et al. Outcome following admission to UK intensive care units after cardiac arrest: A secondary analysis of the ICNARC Case Mix Programme Database. Anaesthesia 62, 1207–1216 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Friberg, H. et al. Survey on current practices for neurological prognostication after cardiac arrest. Resuscitation 90, 158–162 (2015).

    PubMed 

    Google Scholar
     

  • Hirsch, L. J. et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: Proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. J Clin. Neurophysiol. 22, 128–135 (2005).

    PubMed 

    Google Scholar
     

  • Tsuchida, T. N. et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: Report of the American Clinical Neurophysiology Society critical care monitoring committee. J. Clin. Neurophysiol. 30, 161–173 (2013).

    PubMed 

    Google Scholar
     

  • Gaspard, N. et al. Interrater agreement for Critical Care EEG Terminology. Epilepsia 55, 1366–1373 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beuchat, I., Solari, D., Novy, J., Oddo, M. & Rossetti, A. O. Standardized EEG interpretation in patients after cardiac arrest: Correlation with other prognostic predictors. Resuscitation 126, 143–146 (2018).

    PubMed 

    Google Scholar
     

  • Abend, N. S. et al. Interrater agreement of EEG interpretation after pediatric cardiac arrest using standardized critical care EEG terminology. J. Clin. Neurophysiol. 34, 534–541 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sethi, N. K., Westhall, E., Rossetti, A. O. & Cronberg, T. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 87, 1631 (2016).

    PubMed 

    Google Scholar
     

  • Abend, N. S. et al. Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J. Clin. Neurophysiol. 28, 15–19 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grant, A. C. et al. EEG interpretation reliability and interpreter confidence: A large single-center study. Epilepsy Behav. 32, 102–107 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, G. B., McLachlan, R. S., Kreeft, J. H. & Demelo, J. D. An electroencephalographic classification for coma. Can. J. Neurol. Sci. 24, 320–325 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, W. D. Continuous EEG in therapeutic hypothermia after cardiac arrest: Prognostic and clinical value. Neurology 81, 855 (2013).

    PubMed 

    Google Scholar
     

  • Westhall, E. et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin. Neurophysiol. 126, 2397–2404 (2015).

    PubMed 

    Google Scholar
     

  • Kim, Y. J., Kim, M. J., Koo, Y. S. & Kim, W. Y. Background frequency patterns in standard electroencephalography as an early prognostic tool in out-of-hospital cardiac arrest survivors treated with targeted temperature management. J. Clin. Med. 9, 66 (2020).


    Google Scholar
     

  • Westhall, E. et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 86, 1482–1490 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999).

  • Roach, B. J. & Mathalon, D. H. Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr. Bull. 34, 907–926 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    PubMed 

    Google Scholar
     

  • Makeig, S., Debener, S., Onton, J. & Delorme, A. Mining event-related brain dynamics. Trends Cogn. Sci. 8, 204–210 (2004).

    PubMed 

    Google Scholar
     

  • Tafuro, A., Ambrosini, E., Puccioni, O. & Vallesi, A. Brain oscillations in cognitive control: A cross-sectional study with a spatial stroop task. Neuropsychologia 133, 107190 (2019).

    PubMed 

    Google Scholar
     

  • Chikara, R. K. & Ko, L. W. Global neural activities changes under human inhibitory control using translational scenario. Brain Sci. 10, 66 (2020).


    Google Scholar
     

  • Sowndhararajan, K., Kim, M., Deepa, P., Park, S. J. & Kim, S. Application of the P300 Event-Related Potential in the Diagnosis of Epilepsy Disorder: A Review. Sci Pharm 86 (2018).

  • Kim, M. J., Yum, M. S., Yeh, H. R. & Ko, T. S. Fast oscillation dynamics during hypsarrhythmia as a localization biomarker. J. Neurophysiol. 119, 679–687 (2018).

    PubMed 

    Google Scholar
     

  • Uhlhaas, P. J. et al. Neural synchrony in cortical networks: History, concept and current status. Front. Integr. Neurosci. 3, 17 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carhart-Harris, R. L. The entropic brain—Revisited. Neuropharmacology 142, 167–178 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Carhart-Harris, R. L. et al. The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. H. et al. Effect of depth of anesthesia on the phase lag entropy in patients undergoing general anesthesia by propofol: A STROBE-compliant study. Medicine 99, e21303 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, H. W. et al. Monitoring of anesthetic depth and EEG band power using phase lag entropy during propofol anesthesia. BMC Anesthesiol. 20, 49 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X., Yan, X., Gao, P., Gao, X. & Zhang, S. Automatic detection of epileptic seizure based on approximate entropy, recurrence quanti fi cation analysis and convolutional neural networks. Artif. Intell. Med. 102, 101711 (2020).

    PubMed 

    Google Scholar
     

  • Li, P. et al. Detection of epileptic seizure based on entropy analysis of short-term EEG. PLoS ONE 13, e0193691 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Backman, S. et al. Highly malignant routine EEG predicts poor prognosis after cardiac arrest in the Target Temperature Management trial. Resuscitation 131, 24–28 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Halgren, M. et al. The generation and propagation of the human alpha rhythm. Proc. Natl. Acad. Sci. USA 116, 23772–23782 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mierau, A., Klimesch, W. & Lefebvre, J. State-dependent alpha peak frequency shifts: Experimental evidence, potential mechanisms and functional implications. Neuroscience 360, 146–154 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, X., Yang, X. & Sun, Z. Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer’s disease. PLoS ONE 15, e0229950 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kustermann, T. et al. Electroencephalography-based power spectra allow coma outcome prediction within 24 h of cardiac arrest. Resuscitation 142, 162–167 (2019).

    PubMed 

    Google Scholar
     

  • Forgacs, P. B. et al. Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann. Clin. Transl. Neurol. 4, 119–129 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moseby-Knappe, M. & Cronberg, T. Can serum markers of brain injury predict neurological outcome after out-of-hospital cardiac arrest? Author’s reply. Intensive Care Med. 48, 248 (2022).

    PubMed 

    Google Scholar
     

  • Moseby-Knappe, M. et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med. 47, 984–994 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geocadin, R. G. et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: A scientific statement from the American Heart Association. Circulation 140, e517–e542 (2019).

    PubMed 

    Google Scholar
     

  • Kim, Y. J. et al. The role of post-resuscitation electrocardiogram in patients with ST-segment changes in the immediate post-cardiac arrest period. JACC Cardiovasc. Interv. 10, 451–459 (2017).

    PubMed 

    Google Scholar
     

  • Peberdy, M. A. et al. Part 9: Post-cardiac arrest care: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122, S768-786 (2010).

    PubMed 

    Google Scholar
     

  • Callaway, C. W. et al. Part 8: Post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, S465-482 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. J. et al. Long-term neurological outcomes in patients after out-of-hospital cardiac arrest. Resuscitation 101, 1–5 (2016).

    PubMed 

    Google Scholar
     

  • Tjepkema-Cloostermans, M. C., van Meulen, F. B., Meinsma, G. & van Putten, M. J. A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac arrest. Crit. Care 17, R252 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapucu, F. E. et al. Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements. Front. Comput. Neurosci. 10, 112 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Zoubi, O. et al. Predicting age from brain EEG signals—A machine learning approach. Front. Aging Neurosci. 10, 184 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Back to top button