Alpha-power in electroencephalography as good outcome predictor for out-of-hospital cardiac arrest survivors
Atwood, C., Eisenberg, M. S., Herlitz, J. & Rea, T. D. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67, 75–80 (2005).
Mozaffarian, D. et al. Heart disease and stroke statistics–2015 update: A report from the American Heart Association. Circulation 131, e29-322 (2015).
Dragancea, I., Rundgren, M., Englund, E., Friberg, H. & Cronberg, T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation 84, 337–342 (2013).
Lemiale, V. et al. Intensive care unit mortality after cardiac arrest: The relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39, 1972–1980 (2013).
Ben-Hamouda, N., Taccone, F. S., Rossetti, A. O. & Oddo, M. Contemporary approach to neurologic prognostication of coma after cardiac arrest. Chest 146, 1375–1386 (2014).
Sandroni, C. et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation 85, 1779–1789 (2014).
Nolan, J. P. et al. Outcome following admission to UK intensive care units after cardiac arrest: A secondary analysis of the ICNARC Case Mix Programme Database. Anaesthesia 62, 1207–1216 (2007).
Friberg, H. et al. Survey on current practices for neurological prognostication after cardiac arrest. Resuscitation 90, 158–162 (2015).
Hirsch, L. J. et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: Proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. J Clin. Neurophysiol. 22, 128–135 (2005).
Tsuchida, T. N. et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: Report of the American Clinical Neurophysiology Society critical care monitoring committee. J. Clin. Neurophysiol. 30, 161–173 (2013).
Gaspard, N. et al. Interrater agreement for Critical Care EEG Terminology. Epilepsia 55, 1366–1373 (2014).
Beuchat, I., Solari, D., Novy, J., Oddo, M. & Rossetti, A. O. Standardized EEG interpretation in patients after cardiac arrest: Correlation with other prognostic predictors. Resuscitation 126, 143–146 (2018).
Abend, N. S. et al. Interrater agreement of EEG interpretation after pediatric cardiac arrest using standardized critical care EEG terminology. J. Clin. Neurophysiol. 34, 534–541 (2017).
Sethi, N. K., Westhall, E., Rossetti, A. O. & Cronberg, T. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 87, 1631 (2016).
Abend, N. S. et al. Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J. Clin. Neurophysiol. 28, 15–19 (2011).
Grant, A. C. et al. EEG interpretation reliability and interpreter confidence: A large single-center study. Epilepsy Behav. 32, 102–107 (2014).
Young, G. B., McLachlan, R. S., Kreeft, J. H. & Demelo, J. D. An electroencephalographic classification for coma. Can. J. Neurol. Sci. 24, 320–325 (1997).
Freeman, W. D. Continuous EEG in therapeutic hypothermia after cardiac arrest: Prognostic and clinical value. Neurology 81, 855 (2013).
Westhall, E. et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin. Neurophysiol. 126, 2397–2404 (2015).
Kim, Y. J., Kim, M. J., Koo, Y. S. & Kim, W. Y. Background frequency patterns in standard electroencephalography as an early prognostic tool in out-of-hospital cardiac arrest survivors treated with targeted temperature management. J. Clin. Med. 9, 66 (2020).
Westhall, E. et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 86, 1482–1490 (2016).
Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999).
Roach, B. J. & Mathalon, D. H. Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr. Bull. 34, 907–926 (2008).
Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).
Makeig, S., Debener, S., Onton, J. & Delorme, A. Mining event-related brain dynamics. Trends Cogn. Sci. 8, 204–210 (2004).
Tafuro, A., Ambrosini, E., Puccioni, O. & Vallesi, A. Brain oscillations in cognitive control: A cross-sectional study with a spatial stroop task. Neuropsychologia 133, 107190 (2019).
Chikara, R. K. & Ko, L. W. Global neural activities changes under human inhibitory control using translational scenario. Brain Sci. 10, 66 (2020).
Sowndhararajan, K., Kim, M., Deepa, P., Park, S. J. & Kim, S. Application of the P300 Event-Related Potential in the Diagnosis of Epilepsy Disorder: A Review. Sci Pharm 86 (2018).
Kim, M. J., Yum, M. S., Yeh, H. R. & Ko, T. S. Fast oscillation dynamics during hypsarrhythmia as a localization biomarker. J. Neurophysiol. 119, 679–687 (2018).
Uhlhaas, P. J. et al. Neural synchrony in cortical networks: History, concept and current status. Front. Integr. Neurosci. 3, 17 (2009).
Carhart-Harris, R. L. The entropic brain—Revisited. Neuropharmacology 142, 167–178 (2018).
Carhart-Harris, R. L. et al. The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).
Park, J. H. et al. Effect of depth of anesthesia on the phase lag entropy in patients undergoing general anesthesia by propofol: A STROBE-compliant study. Medicine 99, e21303 (2020).
Shin, H. W. et al. Monitoring of anesthetic depth and EEG band power using phase lag entropy during propofol anesthesia. BMC Anesthesiol. 20, 49 (2020).
Gao, X., Yan, X., Gao, P., Gao, X. & Zhang, S. Automatic detection of epileptic seizure based on approximate entropy, recurrence quanti fi cation analysis and convolutional neural networks. Artif. Intell. Med. 102, 101711 (2020).
Li, P. et al. Detection of epileptic seizure based on entropy analysis of short-term EEG. PLoS ONE 13, e0193691 (2018).
Backman, S. et al. Highly malignant routine EEG predicts poor prognosis after cardiac arrest in the Target Temperature Management trial. Resuscitation 131, 24–28 (2018).
Halgren, M. et al. The generation and propagation of the human alpha rhythm. Proc. Natl. Acad. Sci. USA 116, 23772–23782 (2019).
Mierau, A., Klimesch, W. & Lefebvre, J. State-dependent alpha peak frequency shifts: Experimental evidence, potential mechanisms and functional implications. Neuroscience 360, 146–154 (2017).
Li, X., Yang, X. & Sun, Z. Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer’s disease. PLoS ONE 15, e0229950 (2020).
Kustermann, T. et al. Electroencephalography-based power spectra allow coma outcome prediction within 24 h of cardiac arrest. Resuscitation 142, 162–167 (2019).
Forgacs, P. B. et al. Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann. Clin. Transl. Neurol. 4, 119–129 (2017).
Moseby-Knappe, M. & Cronberg, T. Can serum markers of brain injury predict neurological outcome after out-of-hospital cardiac arrest? Author’s reply. Intensive Care Med. 48, 248 (2022).
Moseby-Knappe, M. et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med. 47, 984–994 (2021).
Geocadin, R. G. et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: A scientific statement from the American Heart Association. Circulation 140, e517–e542 (2019).
Kim, Y. J. et al. The role of post-resuscitation electrocardiogram in patients with ST-segment changes in the immediate post-cardiac arrest period. JACC Cardiovasc. Interv. 10, 451–459 (2017).
Peberdy, M. A. et al. Part 9: Post-cardiac arrest care: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122, S768-786 (2010).
Callaway, C. W. et al. Part 8: Post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, S465-482 (2015).
Kim, Y. J. et al. Long-term neurological outcomes in patients after out-of-hospital cardiac arrest. Resuscitation 101, 1–5 (2016).
Tjepkema-Cloostermans, M. C., van Meulen, F. B., Meinsma, G. & van Putten, M. J. A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac arrest. Crit. Care 17, R252 (2013).
Kapucu, F. E. et al. Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements. Front. Comput. Neurosci. 10, 112 (2016).
Al Zoubi, O. et al. Predicting age from brain EEG signals—A machine learning approach. Front. Aging Neurosci. 10, 184 (2018).