Header
Header
Article

A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys


  • Writing Group Members et al, Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 333, 447–454 (2016).

  • Walker, G. B., Jadhav, A. P. & Jovin, T. G. Assessing the efficacy of endovascular therapy in stroke treatments: updates from the new generation of trials. Expert. Rev. Cardiovasc. Ther. 15, 757–766 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomized trials. Lancet 387, 1723–1731 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Sommer, C. J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 133, 245–261 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi, L. et al. A new era for stroke therapy: integrating neurovascular protection with optimal reperfusion. J. Cereb. Blood Flow. Metab. 38, 2073–2091 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Collins, V. E. et al. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Fisher, M. et al. Update of the Stroke Therapy Academic Industry Roundtable preclinical recommendations. Stroke 40, 2244–2250 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, D., Yue, F., Zou, C., Chan, P. & Zhang, Y. A. Analysis of glucose metabolism in cynomolgus monkeys during aging. Biogerontology 13, 147–155 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Astrup, J., Siesjö, B. K. & Symon, L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12, 723–725 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cook, D. J., Teves, L. & Tymianski, M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483, 213–217 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marshall, J. W. et al. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke 32, 190–198 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Herrmann, A. M. et al. Large animals in neurointerventional research: a systematic review on models, techniques and their application in endovascular procedures for stroke, aneurysms and vascular malformations. J. Cereb. Blood Flow. Metab. 39, 375–394 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hill, M. D. et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 395, 878–887 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mayor-Nunez, D. et al. Plasmin-resistant PSD-95 inhibitors resolve effect-modifying drug-drug interactions between alteplase and nerinetide in acute stroke. Sci. Transl. Med. 13, eabb1498 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roitberg, B. et al. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging and anatomical study. Neurol. Res. 25, 68–78 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Wu, D. et al. Endovascular ischemic stroke models of adult rhesus monkeys: a comparison of two endovascular methods. Sci. Rep. 6, 31608 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, D. et al. Selective intraarterial brain cooling improves long-term outcomes in a non-human primate model of embolic stroke: efficacy depending on reperfusion status. J. Cereb. Blood Flow. Metab. 40, 1415–1426 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, L. et al. Intranasal salvinorin A improves neurological outcome in rhesus monkey ischemic stroke model using autologous blood clot. J. Cereb. Blood Flow. Metab. 41, 723–730 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fang, Z. et al. A MD2-perturbing peptide has therapeutic effects in rodent and rhesus monkey models of stroke. Sci. Trans. Med. 13, eabb6716 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gao, Y. et al. Novel acute retinal artery ischemia and reperfusion model in nonhuman primates. Stroke 51, 2568–2572 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mergenthaler, P. & Meisel, A. Do stroke models model stroke? Dis. Model. Mech. 5, 718–725 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marshall, J. W. et al. Serial MRI, functional recovery, and long-term infarct maturation in a non-human primate model of stroke. Brain Res. Bull. 61, 577–585 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boltze, J. et al. New mechanistic insights, novel treatment paradigms, and clinical progress in cerebrovascular diseases. Front. Aging Neurosci. 13, 623751 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao, B. et al. A more consistent intraluminal rhesus monkey model of ischemic stroke. Neural Regen. Res. 9, 2087–2094 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Crespigny, A. J. et al. Acute studies of a new primate model of reversible middle cerebral artery occlusion. J. Stroke Cerebrovasc. Dis. 14, 80–87 (2015).

    Article 

    Google Scholar
     

  • Fisher, M. Endovascular therapy for basilar-artery occlusion—still waiting for answers. N. Engl. J. Med. 384, 1954–1955 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Wu, D. et al. Primate version of modified Rankin scale for classifying dysfunction in rhesus monkeys. Stroke 51, 1620–1623 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Wu, D. et al. Reperfusion plus selective intra-arterial cooling (SI-AC) improve recovery in a nonhuman primate model of stroke. Neurotherapeutics 17, 1931–1939 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Susumu, T. et al. Effects of intra-arterial urokinase on a non-human primate thromboembolic stroke model. J. Pharmacol. Sci. 100, 278–284 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qureshi, A. I. et al. Intraarterial reteplase and intravenous abciximab for treatment of acute ischemic stroke. A preliminary feasibility and safety study in a nonhuman primate model. Neuroradiology 47, 845–854 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Yoshikawa, T. et al. Ginsenoside Rb1 reduces neurodegeneration in the peri-infarct area of a thromboembolic stroke model in non-human primates. J. Pharmacol. Sci. 107, 32–40 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuge, Y. et al. Serial changes in cerebral blood flow and flow-metabolism uncoupling in primates with acute thromboembolic stroke. J. Cereb. Blood Flow. Metab. 21, 202–210 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jickling, G. C. & Sharp, F. R. Improving the translation of animal ischemic stroke studies to humans. Metab. Brain. Dis. 30, 461–467 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Yi, K. S. et al. Sustained diffusion reversal with inbore reperfusion in monkey stroke models: confirmed by prospective magnetic resonance imaging. J. Cereb. Blood Flow. Metab. 37, 2002–2012 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Li, K. et al. Pilot study of endovascular delivery of mesenchymal stromal cells in the aortic wall in a pig model. Cell Transplant. 30, 9636897211010652 (2021).

    PubMed 

    Google Scholar
     

  • Camstra, K. M. et al. Canine model for selective and superselective cerebral intra-arterial therapy testing. Neurointervention 15, 107–116 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kringe, L. et al. Quality and validity of large animal experiments in stroke: a systematic review. J. Cereb. Blood Flow. Metab. 40, 2152–2164 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Debatisse, J. et al. A non-human primate model of stroke reproducing endovascular thrombectomy and allowing long-term imaging and neurological read-outs. J. Cereb. Blood Flow. Metab. 41, 745–760 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106, 740–745 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, Z. & Chopp, M. Neural stem cells and ischemic brain. J. Stroke 18, 267–272 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gauberti, M. et al. Thrombotic stroke in the anesthetized monkey (Macaca mulatta): characterization by MRI—a pilot study. Cerebrovasc. Dis. 33, 329–339 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Fisher, M. & Saver, J. L. Future directions of acute ischaemic stroke therapy. Lancet Neurol. 14, 758–767 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Takamatsu, H. et al. Detection of reperfusion injury using PET in a monkey model of cerebral ischemia. J. Nucl. Med. 41, 1409–1416 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Sawada, H. et al. SMTP-7, a novel small-molecule thrombolytic for ischemic stroke: a study in rodents and primates. J. Cereb. Blood Flow. Metab. 34, 235–241 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grow, D. A., McCarrey, J. R. & Navara, C. S. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell. Res. 17, 352–366 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McEntire, C. R. et al. Impaired arm function and finger dexterity in a nonhuman primate model of stroke: motor and cognitive assessments. Stroke 47, 1109–1116 (2006).

    Article 

    Google Scholar
     

  • Kito, G. et al. Experimental thromboembolic stroke in cynomolgus monkeys. J. Neurosci. Methods 105, 45–53 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cui, L. L., Golubczyk, D., Tolppanen, A. M., Boltze, J. & Jolkkonen, J. Cell therapy for ischemic stroke: are differences in preclinical and clinical study design responsible for the translational loss of efficacy? Ann. Neurol. 86, 5–16 (2019).

    PubMed 

    Google Scholar
     

  • Neuhaus, A. A., Couch, Y., Hadley, G. & Buchan, A. M. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain 140, 2079–2092 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Tibussek, D. et al. Severe cerebral vasospasm and childhood arterial ischemic stroke after intrathecal cytarabine. Pediatrics 137, e20152143 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Amlie-Lefond, C. & Wainwright, M. S. Childhood stroke: thinking locally, acting globally? Stroke 52, 162–163 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Chen, X. et al. An ischemic stroke model of nonhuman primates for remote lesion studies: a behavioral and neuroimaging investigation. Restor. Neurol. Neurosci. 33, 131–142 (2015).

    PubMed 

    Google Scholar
     

  • Powers, W. J. Acute ischemic stroke. N. Engl. J. Med. 383, 252–260 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Cook, D. J. & Tymianski, M. Nonhuman primate models of stroke for translational neuroprotection research. Neurotherapeutics 9, 371–379 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dai, P. et al. A pilot study on transient ischemic stroke induced with endothelin-1 in the rhesus monkeys. Sci. Rep. 7, 45097 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Del Zoppo, G. J. et al. Experimental acute thrombotic stroke in baboons. Stroke 17, 1254–1265 (1986).

    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, O., Bremer, A. M. & West, C. R. Experimental regional cerebral ischemia in the middle cerebral artery territory in primates. Part 1: angio-anatomy and description of an experimental model with selective embolization of the internal carotid artery bifurcation. Stroke 8, 61–70 (1977).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cook, D. J., Teves, L. & Tymianski, M. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci. Transl. Med. 4, 154ra133 (2012).

    PubMed 

    Google Scholar
     

  • D’Arceuil, H. E., Duggan, M., He, J., Pryor, J. & de Crespigny, A. Middle cerebral artery occlusion in Macaca fascicularis: acute and chronic stroke evolution. J. Med. Primatol. 35, 78–86 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Tong, F. C. et al. An enhanced model of middle cerebral artery occlusion in nonhuman primates using an endovascular trapping technique. Am. J. Neuroradiol. 36, 2354–2359 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Temporal evolution of ischemic lesions in nonhuman primates: a diffusion and perfusion MRI study. PLoS ONE 10, e0117290 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Focal embolic cerebral ischemia in the rat. Nat. Protoc. 10, 539–547 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yonas, H., Wolfson, S. K. Jr., Dujovny, M., Boehnke, M. & Cook, E. Selective lenticulostriate occlusion in the primate. A highly focal cerebral ischemia model. Stroke 12, 567–572 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ciccone, A. et al. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 368, 904–913 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27–31 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Higashida, R. T. et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 34, 109–137 (2003).

    Article 

    Google Scholar
     

  • Institute for Laboratory Animal Research. Guide for the care and use of laboratory animals. Washington, DC: National Academies Press (2011).

  • Won, J. et al. Assessment of hand motor function in a non-human primate model of ischemic stroke. Exp. Neurobiol. 29, 300–313 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. A pilot behavioural and neuroimaging investigation on photothrombotic stroke models in rhesus monkeys. J. Neurosci. Methods 362, 109291 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Sparks, D. S. et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat. Protoc. 15, 877–924 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jia, J. M. et al. Control of cerebral ischemia with magnetic nanoparticles. Nat. Methods 14, 160–166 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sneed, S. E. et al. Magnetic resonance imaging and gait analysis indicate similar outcomes between Yucatan and Landrace porcine ischemic stroke models. Front. Neurol. 11, 594954 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cattaneo, G. F. et al. Selective intra-carotid blood cooling in acute ischemic stroke: a safety and feasibility study in an ovine stroke model. J. Cereb. Blood Flow. Metab. 41, 3097–3110 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shazeeb, M. S. et al. Infarct evolution in a large animal model of middle cerebral artery occlusion. Transl. Stroke Res. 11, 468–480 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Kurisu, K. et al. Cofilin-actin rod formation in experimental stroke is attenuated by therapeutic hypothermia and overexpression of the inducible 70 kD inducible heat shock protein (Hsp70). Brain Circ. 5, 225–233 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shin, H. K. et al. Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130, 1631–1642 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Saver, J. L. et al. Thrombectomy for distal, medium vessel occlusions: a consensus statement on present knowledge and promising directions. Stroke 51, 2872–2884 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Jia, L., Chopp, M., Zhang, L., Lu, M. & Zhang, Z. Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke 41, 2071–2076 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, D. et al. Selective therapeutic cooling: to maximize benefits and minimize side effects related to hypothermia. J. Cereb. Blood Flow. Metab. 42, 213–215 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • McTaggart, R. A. et al. Optimization of endovascular therapy in the neuroangiography suite to achieve fast and complete (expanded treatment in cerebral ischemia 2c-3) reperfusion. Stroke 51, 1961–1968 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Bouts, M. J. et al. Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates. BMC Neurosci. 16, 91 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van Winkle, J. A. et al. Concurrent middle cerebral artery occlusion and intra-arterial drug infusion via ipsilateral common carotid artery catheter in the rat. J. Neurosci. Methods 213, 63–69 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tian, H. et al. Influence of occlusion site and baseline ischemic core on outcome in patients with ischemic stroke. Neurology 92, e2626–e2643 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Chamorro, Á., Lo, E. H., Renú, A., van Leyden, K. & Lyden, P. D. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry 92, 129–135 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • van Leyen, K., Wang, X., Selim, M. & Lo, E. H. Opening the time window. J. Cereb. Blood Flow. Metab. 39, 2539–2540 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates. Stroke 38, 138–145 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mărgăritescu, O. et al. Histopathological changes in acute ischemic stroke. Rom. J. Morphol. Embryol. 50, 327–339 (2009).

    PubMed 

    Google Scholar
     

  • Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50, e344–e418 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Li, S. et al. White matter demyelination predates axonal injury after ischemic stroke in cynomolgus monkeys. Exp. Neurol. 340, 113655 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spetzler, R. F., Zabramski, J. M., Kaufman, B. & Yeung, H. N. Acute NMR changes during MCA occlusion: a preliminary study in primates. Stroke 14, 185–191 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaiser, E. E. & West, F. D. Large animal ischemic stroke models: replicating human stroke pathophysiology. Neural Regen. Res. 15, 1377–1387 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meloni, B. P. et al. Poly-Arginine Peptide-18 (R18) reduces brain injury and improves functional outcomes in a nonhuman primate stroke model. Neurotherapeutics 17, 627–634 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harding, J. D. Nonhuman primates and translational research: progress, opportunities, and challenges. ILAR J. 58, 141–150 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, D., Chandra, A., Chen, J., Ding, Y. & Ji, X. Endovascular ischemic stroke models in nonhuman primates. Neurotherapeutics 15, 146–155 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Fukuda, S. & del Zoppo, G. J. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 44, 96–104 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sorby-Adams, A. J., Vink, R. & Turner, R. J. Large animal models of stroke and traumatic brain injury as translational tools. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R165–R190 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bihel, E. et al. Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations. J. Cereb. Blood Flow. Metab. 30, 273–285 (2010).

    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Back to top button