Fine-tuning the artificial intelligence experience in endoscopy


. 2022 May 20.

doi: 10.1002/ueg2.12253.

Online ahead of print.


Item in Clipboard


Keith Siau et al.

United European Gastroenterol J.


No abstract available


artificial intelligence; colonoscopy; endoscopy; polypectomy.



    1. Wang P, Liu X, Berzin TM, Brown JRG, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol. 2020;5(4):343-51.

    1. Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68(10):1813-19.

    1. Wallace MB, Sharma P, Bhandari P, East J, Antonelli G, Lorenzetti R, et al. Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology. 2022.

    1. Hassan C, Balsamo G, Lorenzetti R, Zullo A, Antonelli G. Artificial intelligence for leaving-in-situ colorectal polyps: results of a real-time clinical trial. Endoscopy. 2022;54(S 01):OP140.

    1. Siau K, Hayee BH, Gayam S. Endoscopy’s current carbon footprint. Techniques Innovations Gastrointestinal Endoscopy. 2021;23(4):344-52.

Source link

Back to top button