EHS
EHS

Novel Quantification of Extracellular Vesicles with Unaltered Surface Membranes Using an Internalized Oligonucleotide Tracer and Applied Pharmacokinetic Multiple Compartment Modeling


Pharm Res. 2021 Oct 20. doi: 10.1007/s11095-021-03102-z. Online ahead of print.

ABSTRACT

PURPOSE: We developed an accessible method for labeling small extracellular vesicles (sEVs) without disrupting endogenous ligands. Using labeled sEVs administered to conscious rats, we developed a multiple compartment pharmacokinetic model to identify potential differences in the disposition of sEVs from three different cell types.

METHODS: Crude sEVs were labeled with a non-homologous oligonucleotide and isolated from cell culture media using a commercial reagent. Jugular vein catheters were used to introduce EVs to conscious rats (n = 30) and to collect blood samples. Digital PCR was leveraged to allow for quantification over a wide dynamic range. Non-linear mixed effects analysis with first order conditional estimation – extended least squares (FOCE ELS) was used to estimate population-level parameters with associated intra-animal variability.

RESULTS: 86.5% ± 1.5% (mean ± S.E.) of EV particles were in the 45-195 nm size range and demonstrated protein and lipid markers of endosomal origin. Incorporated oligonucleotide was stable in blood and detectable over five half-lives. Data were best described by a three-compartment model with one elimination from the central compartment. We performed an observation-based simulated posterior predictive evaluation with prediction-corrected visual predictive check. Covariate and bootstrap analyses identified cell type having an influence on peripheral volumes (V2 and V3) and clearance (Cl3).

CONCLUSIONS: Our method relies upon established laboratory techniques, can be tailored to a variety of biological questions regarding the pharmacokinetic disposition of extracellular vesicles, and will provide a complementary approach for the of study EV ligand-receptor interactions in the context of EV uptake and targeted therapeutics.

PMID:34671921 | DOI:10.1007/s11095-021-03102-z

Source link

EHS
Back to top button