EHS
EHS

Quantitative ultrasound and machine learning for assessment of steatohepatitis in a rat model.


Icon for Springer Related Articles

Quantitative ultrasound and machine learning for assessment of steatohepatitis in a rat model.

Eur Radiol. 2018 Dec 17;:

Authors: Tang A, Destrempes F, Kazemirad S, Garcia-Duitama J, Nguyen BN, Cloutier G

Abstract
OBJECTIVES: To develop a machine learning model based on quantitative ultrasound (QUS) parameters to improve classification of steatohepatitis with shear wave elastography in rats by using histopathology scoring as the reference standard.
METHODS: This study received approval from the institutional animal care committee. Sixty male Sprague-Dawley rats were either fed a standard chow or a methionine- and choline-deficient diet. Ultrasound-based radiofrequency images were recorded in vivo to generate QUS and elastography maps. Random forests classification models and a bootstrap method were used to identify the QUS parameters that improved the classification accuracy of elastography. Receiver-operating characteristic analyses were performed.
RESULTS: For classification of not steatohepatitis vs borderline or steatohepatitis, the area under the receiver-operating characteristic curve (AUC) increased from 0.63 for elastography alone to 0.72 for a model that combined elastography and QUS techniques (p < 0.001). For detection of liver steatosis grades 0 vs ≥ 1, ≤ 1 vs ≥ 2, ≤ 2 vs 3, respectively, the AUCs increased from 0.70, 0.65, and 0.69 to 0.78, 0.78, and 0.75 (p < 0.001). For detection of liver inflammation grades 0 vs ≥ 1, ≤ 1 vs ≥ 2, ≤ 2 vs 3, respectively, the AUCs increased from 0.58, 0.77, and 0.78 to 0.66, 0.84, and 0.87 (p < 0.001). For staging of liver fibrosis grades 0 vs ≥ 1, ≤ 1 vs ≥ 2, and ≤ 2 vs ≥ 3, respectively, the AUCs increased from 0.79, 0.92, and 0.91 to 0.85, 0.98, and 0.97 (p < 0.001).
CONCLUSION: QUS parameters improved the classification accuracy of steatohepatitis, liver steatosis, inflammation, and fibrosis compared to shear wave elastography alone.
KEY POINTS: • Quantitative ultrasound and shear wave elastography improved classification accuracy of liver steatohepatitis and its histological features (liver steatosis, inflammation, and fibrosis) compared to elastography alone. • A machine learning approach based on random forest models and incorporating local attenuation and homodyned-K tissue modeling shows promise for classification of nonalcoholic steatohepatitis. • Further research should be performed to demonstrate the applicability of this multi-parametric QUS approach in a human cohort and to validate the combinations of parameters providing the highest classification accuracy.

PMID: 30560362 [PubMed – as supplied by publisher]

Source link

EHS
Back to top button