EHS
EHS

Identifying free-text features to improve automated classification of structured histopathology reports for feline small intestinal disease.

Related Articles

Identifying free-text features to improve automated classification of structured histopathology reports for feline small intestinal disease.

J Vet Diagn Invest. 2018 Mar;30(2):211-217

Authors: Awaysheh A, Wilcke J, Elvinger F, Rees L, Fan W, Zimmerman K

Abstract
The histologic evaluation of gastrointestinal (GI) biopsies is the standard for diagnosis of a variety of GI diseases (e.g., inflammatory bowel disease [IBD] and alimentary lymphoma [ALA]). The World Small Animal Veterinary Association (WSAVA) Gastrointestinal International Standardization Group proposed a reporting standard for GI biopsies consisting of a defined set of microscopic features. We compared the machine classification accuracy of free-text microscopic findings with those represented in the WSAVA format with a diagnosis of IBD and ALA. Unstructured free-text duodenal biopsy pathology reports from cats ( n = 60) with a diagnosis of IBD ( n = 20), ALA ( n = 20), or normal ( n = 20) were identified. Biopsy samples from these cases were then scored following the WSAVA guidelines to create a set of structured reports. Three supervised machine-learning algorithms were trained using the structured and then the unstructured reports. Diagnosis classification accuracy for the 3 algorithms was compared using the structured and unstructured reports. Using naive Bayes and neural networks, unstructured information-based models achieved higher diagnostic accuracy (0.90 and 0.88, respectively) compared to the structured information-based models (0.74 and 0.72, respectively). Results suggest that discriminating diagnostic information was lost using current WSAVA microscopic guideline features. Addition of free-text features (number of plasma cells) increased WSAVA auto-classification performance. The methodologies reported in our study represent a way of identifying candidate microscopic features for use in structured histopathology reports.

PMID: 29188759 [PubMed – indexed for MEDLINE]

EHS
Back to top button