Header
Header
Article

Counting trees in Random Forests: Predicting symptom severity in psychiatric intake reports.

Related Articles

Counting trees in Random Forests: Predicting symptom severity in psychiatric intake reports.

J Biomed Inform. 2017 Nov;75S:S112-S119

Authors: Scheurwegs E, Sushil M, Tulkens S, Daelemans W, Luyckx K

Abstract
The CEGS N-GRID 2016 Shared Task (Filannino et al., 2017) in Clinical Natural Language Processing introduces the assignment of a severity score to a psychiatric symptom, based on a psychiatric intake report. We present a method that employs the inherent interview-like structure of the report to extract relevant information from the report and generate a representation. The representation consists of a restricted set of psychiatric concepts (and the context they occur in), identified using medical concepts defined in UMLS that are directly related to the psychiatric diagnoses present in the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) ontology. Random Forests provides a generalization of the extracted, case-specific features in our representation. The best variant presented here scored an inverse mean absolute error (MAE) of 80.64%. A concise concept-based representation, paired with identification of concept certainty and scope (family, patient), shows a robust performance on the task.

PMID: 28602906 [PubMed – indexed for MEDLINE]

Back to top button